Publikation: Very ample and Koszul segmental fibrations
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In the hierarchy of structural sophistication for lattice polytopes, normal polytopes mark a point of origin; very ample and Koszul polytopes occupy bottom and top spots in this hierarchy, respectively. In this paper we explore a simple construction for lattice polytopes with a twofold aim. On the one hand, we derive an explicit series of very ample 3-dimensional polytopes with arbitrarily large deviation from the normality property, measured via the highest discrepancy degree between the corresponding Hilbert functions and Hilbert polynomials. On the other hand, we describe a large class of Koszul polytopes of arbitrary dimensions, containing many smooth polytopes and extending the previously known class of Nakajima polytopes.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BECK, Matthias, Jessica DELGADO, Joseph GUBELADZE, Mateusz MICHALEK, 2015. Very ample and Koszul segmental fibrations. In: Journal of Algebraic Combinatorics. Springer. 2015, 42(1), pp. 165-182. ISSN 0925-9899. eISSN 1572-9192. Available under: doi: 10.1007/s10801-014-0577-7BibTex
@article{Beck2015ample-52338, year={2015}, doi={10.1007/s10801-014-0577-7}, title={Very ample and Koszul segmental fibrations}, number={1}, volume={42}, issn={0925-9899}, journal={Journal of Algebraic Combinatorics}, pages={165--182}, author={Beck, Matthias and Delgado, Jessica and Gubeladze, Joseph and Michalek, Mateusz} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52338"> <dc:contributor>Delgado, Jessica</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-11T13:20:11Z</dc:date> <dc:contributor>Beck, Matthias</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Delgado, Jessica</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-11T13:20:11Z</dcterms:available> <dc:creator>Michalek, Mateusz</dc:creator> <dc:contributor>Gubeladze, Joseph</dc:contributor> <dc:creator>Beck, Matthias</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52338"/> <dc:contributor>Michalek, Mateusz</dc:contributor> <dc:creator>Gubeladze, Joseph</dc:creator> <dcterms:issued>2015</dcterms:issued> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:rights>terms-of-use</dc:rights> <dcterms:abstract xml:lang="eng">In the hierarchy of structural sophistication for lattice polytopes, normal polytopes mark a point of origin; very ample and Koszul polytopes occupy bottom and top spots in this hierarchy, respectively. In this paper we explore a simple construction for lattice polytopes with a twofold aim. On the one hand, we derive an explicit series of very ample 3-dimensional polytopes with arbitrarily large deviation from the normality property, measured via the highest discrepancy degree between the corresponding Hilbert functions and Hilbert polynomials. On the other hand, we describe a large class of Koszul polytopes of arbitrary dimensions, containing many smooth polytopes and extending the previously known class of Nakajima polytopes.</dcterms:abstract> <dcterms:title>Very ample and Koszul segmental fibrations</dcterms:title> </rdf:Description> </rdf:RDF>