Publikation: Advancing animal behaviour research using drone technology
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Unmanned aerial vehicles or drones have revolutionized wildlife monitoring, and they are increasingly being used to study animal behaviour. In this review, examples of how data captured by drones (primarily images and video) enable the study of animal behaviour in less accessible environments, as well as rare or elusive behaviours, are provided. We believe that the potential application of drone imagery to advance wildlife monitoring creates unique opportunities for animal behaviour research and conservation. Rapid advances in image-tracking technologies and the use of artificial intelligence to identify the position, behaviour and local environment of many individuals simultaneously allow for the automated collection and processing of large data sets. Moreover, drones allow researchers not only to observe but also to manipulate and alter animal behaviour, creating a biohybrid system (i.e. a system involving an interaction between biological and engineered components, as discussed in this special issue), enabling the systematic study of specific behaviours, such as responses to simulated predation risk, or managing animal groups in agricultural settings and human–wildlife conflict scenarios. However, effective drone usage is a difficult task, requiring consideration of many aspects. We highlight the importance of user proficiency in drone piloting and the challenges of processing and analysing the vast amount of data they create. In addition, we provide some insights into the importance of carefully considering the study species and context for animal behaviour research. Various methods of dealing with landscape and interindividual heterogeneity in studies across different species are also suggested. Finally, some ethical considerations and potential unintended consequences of drone usage are discussed.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
PEDRAZZI, Lucia, Hemal NAIK, Chris SANDBROOK, Miguel LURGI, Ines FÜRTBAUER, Andrew J. KING, 2025. Advancing animal behaviour research using drone technology. In: Animal Behaviour. Elsevier. 2025, 222, 123147. ISSN 0003-3472. eISSN 1095-8282. Verfügbar unter: doi: 10.1016/j.anbehav.2025.123147BibTex
@article{Pedrazzi2025-04Advan-72916, title={Advancing animal behaviour research using drone technology}, year={2025}, doi={10.1016/j.anbehav.2025.123147}, volume={222}, issn={0003-3472}, journal={Animal Behaviour}, author={Pedrazzi, Lucia and Naik, Hemal and Sandbrook, Chris and Lurgi, Miguel and Fürtbauer, Ines and King, Andrew J.}, note={Article Number: 123147} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/72916"> <dc:contributor>Pedrazzi, Lucia</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-04-02T11:37:03Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dcterms:issued>2025-04</dcterms:issued> <dc:creator>Lurgi, Miguel</dc:creator> <dcterms:abstract>Unmanned aerial vehicles or drones have revolutionized wildlife monitoring, and they are increasingly being used to study animal behaviour. In this review, examples of how data captured by drones (primarily images and video) enable the study of animal behaviour in less accessible environments, as well as rare or elusive behaviours, are provided. We believe that the potential application of drone imagery to advance wildlife monitoring creates unique opportunities for animal behaviour research and conservation. Rapid advances in image-tracking technologies and the use of artificial intelligence to identify the position, behaviour and local environment of many individuals simultaneously allow for the automated collection and processing of large data sets. Moreover, drones allow researchers not only to observe but also to manipulate and alter animal behaviour, creating a biohybrid system (i.e. a system involving an interaction between biological and engineered components, as discussed in this special issue), enabling the systematic study of specific behaviours, such as responses to simulated predation risk, or managing animal groups in agricultural settings and human–wildlife conflict scenarios. However, effective drone usage is a difficult task, requiring consideration of many aspects. We highlight the importance of user proficiency in drone piloting and the challenges of processing and analysing the vast amount of data they create. In addition, we provide some insights into the importance of carefully considering the study species and context for animal behaviour research. Various methods of dealing with landscape and interindividual heterogeneity in studies across different species are also suggested. Finally, some ethical considerations and potential unintended consequences of drone usage are discussed.</dcterms:abstract> <dc:creator>Naik, Hemal</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:contributor>Fürtbauer, Ines</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Naik, Hemal</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:contributor>Sandbrook, Chris</dc:contributor> <dcterms:title>Advancing animal behaviour research using drone technology</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/72916"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/72916/4/Pedrazzi_2-1uuspm6rqulla1.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Pedrazzi, Lucia</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:creator>Sandbrook, Chris</dc:creator> <dc:contributor>King, Andrew J.</dc:contributor> <dc:creator>King, Andrew J.</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-04-02T11:37:03Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dc:creator>Fürtbauer, Ines</dc:creator> <dc:contributor>Lurgi, Miguel</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/72916/4/Pedrazzi_2-1uuspm6rqulla1.pdf"/> <dc:rights>Attribution 4.0 International</dc:rights> </rdf:Description> </rdf:RDF>