Publikation: Constructions of k-regular maps using finite local schemes
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
A continuous map Rm→RN or Cm→CN is called k-regular if the images of any k points are linearly independent. Given integers m and k a problem going back to Chebyshev and Borsuk is to determine the minimal value of N for which such maps exist. The methods of algebraic topology provide lower bounds for N, but there are very few results on the existence of such maps for particular values m and k. Using methods of algebraic geometry we construct k-regular maps. We relate the upper bounds on N with the dimension of the locus of certain Gorenstein schemes in the punctual Hilbert scheme. The computations of the dimension of this family is explicit for k≤9, and we provide explicit examples for k≤5. We also provide upper bounds for arbitrary m and k.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BUCZYŃSKI, Jarosław, Tadeusz JANUSZKIEWICZ, Joachim JELISIEJEW, Mateusz MICHALEK, 2019. Constructions of k-regular maps using finite local schemes. In: Journal of the European Mathematical Society. European Mathematical Society (EMS). 2019, 21(6), pp. 1775-1808. ISSN 1435-9855. eISSN 1435-9863. Available under: doi: 10.4171/JEMS/873BibTex
@article{Buczynski2019Const-52566, year={2019}, doi={10.4171/JEMS/873}, title={Constructions of k-regular maps using finite local schemes}, number={6}, volume={21}, issn={1435-9855}, journal={Journal of the European Mathematical Society}, pages={1775--1808}, author={Buczyński, Jarosław and Januszkiewicz, Tadeusz and Jelisiejew, Joachim and Michalek, Mateusz} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52566"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Buczyński, Jarosław</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Buczyński, Jarosław</dc:creator> <dc:contributor>Michalek, Mateusz</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52566"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Jelisiejew, Joachim</dc:creator> <dcterms:title>Constructions of k-regular maps using finite local schemes</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Januszkiewicz, Tadeusz</dc:contributor> <dc:creator>Michalek, Mateusz</dc:creator> <dc:contributor>Jelisiejew, Joachim</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dc:creator>Januszkiewicz, Tadeusz</dc:creator> <dcterms:abstract xml:lang="eng">A continuous map R<sup>m</sup>→R<sup>N</sup> or C<sup>m</sup>→C<sup>N</sup> is called k-regular if the images of any k points are linearly independent. Given integers m and k a problem going back to Chebyshev and Borsuk is to determine the minimal value of N for which such maps exist. The methods of algebraic topology provide lower bounds for N, but there are very few results on the existence of such maps for particular values m and k. Using methods of algebraic geometry we construct k-regular maps. We relate the upper bounds on N with the dimension of the locus of certain Gorenstein schemes in the punctual Hilbert scheme. The computations of the dimension of this family is explicit for k≤9, and we provide explicit examples for k≤5. We also provide upper bounds for arbitrary m and k.</dcterms:abstract> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-26T12:39:47Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2019</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-26T12:39:47Z</dc:date> </rdf:Description> </rdf:RDF>