Publikation: Predicting the outcome of psychological treatments for borderline personality disorder and posttraumatic stress disorder : a machine learning approach to predict long-term outcome of Narrative Exposure Therapy vs. Dialectical Behavioral Therapy based treatment
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Background: A comorbidity between Borderline Personality Disorder (BPD) and Posttraumatic Stress Disorder (PTSD) is common, severely disabling, and hard to treat. The choice of an optimal psychotherapy based on patient characteristics remains challenging. Objective: This study develops models to predict the outcome of two psychotherapies for comorbid BPD and PTSD. Method: Data from two trials comparing Narrative Exposure Therapy (NET, N = 40) with Dialectical Behavior Therapy-based treatment (DBT-bt, N = 40) was analysed. A cross-validated genetic algorithm was used to detect baseline predictors of change in PTSD symptoms. Results: In the NET group higher education, more baseline PTSD symptoms, more traumatic experiences, fewer baseline BPD symptoms, and not taking antipsychotic medication predicted better treatment outcome. This model (RMSE = 8.98) outperformed the prediction of PTSD symptom reduction with baseline PTSD symptoms alone (RMSE = 10.07) or with all available predictor variables (RMSE = 12.97). Only more baseline PTSD symptoms were selected to predict a better treatment outcome after DBT-bt. This model (RMSE = 9.41) outperformed the prediction of change in PTSD symptoms with all available predictor variables (RMSE = 14.43). Conclusion: Differences in treatment outcome between NET and DBT-bt may be predictable at baseline, to identify which one of both treatments may be most beneficial for individual patients. The small sample size may restrict the generalizability of the results.
Zusammenfassung in einer weiteren Sprache
Antecedentes: La comorbilidad entre el Trastorno Límite de la Personalidad (TLP) y el Trastorno de Estrés Postraumático (TEPT) es frecuente, gravemente incapacitante y difícil de tratar. La elección de una psicoterapia óptima basada en las características del paciente sigue siendo un desafío. Objetivo: Este estudio desarrolla modelos para predecir el resultado de diferentes psicoterapias para el TLP y el TEPT. Método: Se analizaron los datos de dos ensayos que compararon la Terapia de Exposición Narrativa (NET, N = 40) con el tratamiento basado en la Terapia Dialéctica Conductual (DBT-bt, N = 40). Se utilizó un algoritmo genético validado para detectar los predictores basales de cambio en los síntomas del TEPT.
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BLASS, Jakob, Benjamin IFFLAND, Philipp HERZOG, Tim KAISER, Thomas ELBERT, Carolin STEUWE, 2025. Predicting the outcome of psychological treatments for borderline personality disorder and posttraumatic stress disorder : a machine learning approach to predict long-term outcome of Narrative Exposure Therapy vs. Dialectical Behavioral Therapy based treatment. In: European Journal of Psychotraumatology. Taylor & Francis. 2025, 16(1), 2497161. ISSN 2000-8198. eISSN 2000-8066. Verfügbar unter: doi: 10.1080/20008066.2025.2497161BibTex
@article{Bla2025-12-31Predi-74052,
title={Predicting the outcome of psychological treatments for borderline personality disorder and posttraumatic stress disorder : a machine learning approach to predict long-term outcome of Narrative Exposure Therapy vs. Dialectical Behavioral Therapy based treatment},
year={2025},
doi={10.1080/20008066.2025.2497161},
number={1},
volume={16},
issn={2000-8198},
journal={European Journal of Psychotraumatology},
author={Blaß, Jakob and Iffland, Benjamin and Herzog, Philipp and Kaiser, Tim and Elbert, Thomas and Steuwe, Carolin},
note={Article Number: 2497161}
}RDF
<rdf:RDF
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:bibo="http://purl.org/ontology/bibo/"
xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:void="http://rdfs.org/ns/void#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >
<rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/74052">
<dc:creator>Herzog, Philipp</dc:creator>
<dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
<dc:contributor>Iffland, Benjamin</dc:contributor>
<dc:contributor>Blaß, Jakob</dc:contributor>
<dc:contributor>Kaiser, Tim</dc:contributor>
<dc:contributor>Elbert, Thomas</dc:contributor>
<dc:creator>Elbert, Thomas</dc:creator>
<dc:creator>Steuwe, Carolin</dc:creator>
<dcterms:issued>2025-12-31</dcterms:issued>
<dc:rights>Attribution-NonCommercial 4.0 International</dc:rights>
<dc:language>eng</dc:language>
<dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/74052/1/Bla%c3%9f_2-1ty7v7ikxxgp33.PDF"/>
<dc:contributor>Steuwe, Carolin</dc:contributor>
<void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
<dc:contributor>Herzog, Philipp</dc:contributor>
<dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc/4.0/"/>
<dc:creator>Kaiser, Tim</dc:creator>
<dc:creator>Blaß, Jakob</dc:creator>
<dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
<dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/74052/1/Bla%c3%9f_2-1ty7v7ikxxgp33.PDF"/>
<dcterms:alternative>Predicción del resultado de los tratamientos psicológicos para el trastorno límite de la personalidad y el trastorno de estréspostraumático : un enfoque de aprendizaje automático para predecir el resultado a largo plazo de la terapia de exposición narrativa frente al tratamiento basado en la terapia dialéctica conductual</dcterms:alternative>
<dc:creator>Iffland, Benjamin</dc:creator>
<dcterms:title>Predicting the outcome of psychological treatments for borderline personality disorder and posttraumatic stress disorder : a machine learning approach to predict long-term outcome of Narrative Exposure Therapy vs. Dialectical Behavioral Therapy based treatment</dcterms:title>
<bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/74052"/>
<dcterms:abstract>Background:
A comorbidity between Borderline Personality Disorder (BPD) and Posttraumatic Stress Disorder (PTSD) is common, severely disabling, and hard to treat. The choice of an optimal psychotherapy based on patient characteristics remains challenging.
Objective:
This study develops models to predict the outcome of two psychotherapies for comorbid BPD and PTSD.
Method:
Data from two trials comparing Narrative Exposure Therapy (NET, N = 40) with Dialectical Behavior Therapy-based treatment (DBT-bt, N = 40) was analysed. A cross-validated genetic algorithm was used to detect baseline predictors of change in PTSD symptoms.
Results:
In the NET group higher education, more baseline PTSD symptoms, more traumatic experiences, fewer baseline BPD symptoms, and not taking antipsychotic medication predicted better treatment outcome. This model (RMSE = 8.98) outperformed the prediction of PTSD symptom reduction with baseline PTSD symptoms alone (RMSE = 10.07) or with all available predictor variables (RMSE = 12.97). Only more baseline PTSD symptoms were selected to predict a better treatment outcome after DBT-bt. This model (RMSE = 9.41) outperformed the prediction of change in PTSD symptoms with all available predictor variables (RMSE = 14.43).
Conclusion:
Differences in treatment outcome between NET and DBT-bt may be predictable at baseline, to identify which one of both treatments may be most beneficial for individual patients. The small sample size may restrict the generalizability of the results.</dcterms:abstract>
<foaf:homepage rdf:resource="http://localhost:8080/"/>
<dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-07-21T10:47:11Z</dc:date>
<dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-07-21T10:47:11Z</dcterms:available>
</rdf:Description>
</rdf:RDF>