Publikation:

Predicting the outcome of psychological treatments for borderline personality disorder and posttraumatic stress disorder : a machine learning approach to predict long-term outcome of Narrative Exposure Therapy vs. Dialectical Behavioral Therapy based treatment

Lade...
Vorschaubild

Dateien

Blaß_2-1ty7v7ikxxgp33.PDF
Blaß_2-1ty7v7ikxxgp33.PDFGröße: 997.8 KBDownloads: 35

Datum

2025

Autor:innen

Blaß, Jakob
Iffland, Benjamin
Herzog, Philipp
Kaiser, Tim
Steuwe, Carolin

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Predicción del resultado de los tratamientos psicológicos para el trastorno límite de la personalidad y el trastorno de estréspostraumático : un enfoque de aprendizaje automático para predecir el resultado a largo plazo de la terapia de exposición narrativa frente al tratamiento basado en la terapia dialéctica conductual
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

European Journal of Psychotraumatology. Taylor & Francis. 2025, 16(1), 2497161. ISSN 2000-8198. eISSN 2000-8066. Verfügbar unter: doi: 10.1080/20008066.2025.2497161

Zusammenfassung

Background: A comorbidity between Borderline Personality Disorder (BPD) and Posttraumatic Stress Disorder (PTSD) is common, severely disabling, and hard to treat. The choice of an optimal psychotherapy based on patient characteristics remains challenging. Objective: This study develops models to predict the outcome of two psychotherapies for comorbid BPD and PTSD. Method: Data from two trials comparing Narrative Exposure Therapy (NET, N = 40) with Dialectical Behavior Therapy-based treatment (DBT-bt, N = 40) was analysed. A cross-validated genetic algorithm was used to detect baseline predictors of change in PTSD symptoms. Results: In the NET group higher education, more baseline PTSD symptoms, more traumatic experiences, fewer baseline BPD symptoms, and not taking antipsychotic medication predicted better treatment outcome. This model (RMSE = 8.98) outperformed the prediction of PTSD symptom reduction with baseline PTSD symptoms alone (RMSE = 10.07) or with all available predictor variables (RMSE = 12.97). Only more baseline PTSD symptoms were selected to predict a better treatment outcome after DBT-bt. This model (RMSE = 9.41) outperformed the prediction of change in PTSD symptoms with all available predictor variables (RMSE = 14.43). Conclusion: Differences in treatment outcome between NET and DBT-bt may be predictable at baseline, to identify which one of both treatments may be most beneficial for individual patients. The small sample size may restrict the generalizability of the results.

Zusammenfassung in einer weiteren Sprache

Antecedentes: La comorbilidad entre el Trastorno Límite de la Personalidad (TLP) y el Trastorno de Estrés Postraumático (TEPT) es frecuente, gravemente incapacitante y difícil de tratar. La elección de una psicoterapia óptima basada en las características del paciente sigue siendo un desafío. Objetivo: Este estudio desarrolla modelos para predecir el resultado de diferentes psicoterapias para el TLP y el TEPT. Método: Se analizaron los datos de dos ensayos que compararon la Terapia de Exposición Narrativa (NET, N = 40) con el tratamiento basado en la Terapia Dialéctica Conductual (DBT-bt, N = 40). Se utilizó un algoritmo genético validado para detectar los predictores basales de cambio en los síntomas del TEPT.

Fachgebiet (DDC)
150 Psychologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BLASS, Jakob, Benjamin IFFLAND, Philipp HERZOG, Tim KAISER, Thomas ELBERT, Carolin STEUWE, 2025. Predicting the outcome of psychological treatments for borderline personality disorder and posttraumatic stress disorder : a machine learning approach to predict long-term outcome of Narrative Exposure Therapy vs. Dialectical Behavioral Therapy based treatment. In: European Journal of Psychotraumatology. Taylor & Francis. 2025, 16(1), 2497161. ISSN 2000-8198. eISSN 2000-8066. Verfügbar unter: doi: 10.1080/20008066.2025.2497161
BibTex
@article{Bla2025-12-31Predi-74052,
  title={Predicting the outcome of psychological treatments for borderline personality disorder and posttraumatic stress disorder : a machine learning approach to predict long-term outcome of Narrative Exposure Therapy vs. Dialectical Behavioral Therapy based treatment},
  year={2025},
  doi={10.1080/20008066.2025.2497161},
  number={1},
  volume={16},
  issn={2000-8198},
  journal={European Journal of Psychotraumatology},
  author={Blaß, Jakob and Iffland, Benjamin and Herzog, Philipp and Kaiser, Tim and Elbert, Thomas and Steuwe, Carolin},
  note={Article Number: 2497161}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/74052">
    <dc:creator>Herzog, Philipp</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dc:contributor>Iffland, Benjamin</dc:contributor>
    <dc:contributor>Blaß, Jakob</dc:contributor>
    <dc:contributor>Kaiser, Tim</dc:contributor>
    <dc:contributor>Elbert, Thomas</dc:contributor>
    <dc:creator>Elbert, Thomas</dc:creator>
    <dc:creator>Steuwe, Carolin</dc:creator>
    <dcterms:issued>2025-12-31</dcterms:issued>
    <dc:rights>Attribution-NonCommercial 4.0 International</dc:rights>
    <dc:language>eng</dc:language>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/74052/1/Bla%c3%9f_2-1ty7v7ikxxgp33.PDF"/>
    <dc:contributor>Steuwe, Carolin</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Herzog, Philipp</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc/4.0/"/>
    <dc:creator>Kaiser, Tim</dc:creator>
    <dc:creator>Blaß, Jakob</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/74052/1/Bla%c3%9f_2-1ty7v7ikxxgp33.PDF"/>
    <dcterms:alternative>Predicción del resultado de los tratamientos psicológicos para el trastorno límite de la personalidad y el trastorno de estréspostraumático : un enfoque de aprendizaje automático para predecir el resultado a largo plazo de la terapia de exposición narrativa frente al tratamiento basado en la terapia dialéctica conductual</dcterms:alternative>
    <dc:creator>Iffland, Benjamin</dc:creator>
    <dcterms:title>Predicting the outcome of psychological treatments for borderline personality disorder and posttraumatic stress disorder : a machine learning approach to predict long-term outcome of Narrative Exposure Therapy vs. Dialectical Behavioral Therapy based treatment</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/74052"/>
    <dcterms:abstract>Background:
A comorbidity between Borderline Personality Disorder (BPD) and Posttraumatic Stress Disorder (PTSD) is common, severely disabling, and hard to treat. The choice of an optimal psychotherapy based on patient characteristics remains challenging.
Objective: 
This study develops models to predict the outcome of two psychotherapies for comorbid BPD and PTSD.
Method: 
Data from two trials comparing Narrative Exposure Therapy (NET, N = 40) with Dialectical Behavior Therapy-based treatment (DBT-bt, N = 40) was analysed. A cross-validated genetic algorithm was used to detect baseline predictors of change in PTSD symptoms.
Results:
In the NET group higher education, more baseline PTSD symptoms, more traumatic experiences, fewer baseline BPD symptoms, and not taking antipsychotic medication predicted better treatment outcome. This model (RMSE = 8.98) outperformed the prediction of PTSD symptom reduction with baseline PTSD symptoms alone (RMSE = 10.07) or with all available predictor variables (RMSE = 12.97). Only more baseline PTSD symptoms were selected to predict a better treatment outcome after DBT-bt. This model (RMSE = 9.41) outperformed the prediction of change in PTSD symptoms with all available predictor variables (RMSE = 14.43).
Conclusion: 
Differences in treatment outcome between NET and DBT-bt may be predictable at baseline, to identify which one of both treatments may be most beneficial for individual patients. The small sample size may restrict the generalizability of the results.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-07-21T10:47:11Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-07-21T10:47:11Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen