Publikation:

An Efficient Octree Design for Local Variational Range Image Fusion

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2017

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

European Union (EU): 336978

Projekt

LIA - Light Field Imaging and Analysis
Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

ROTH, Volker, ed., Thomas VETTER, ed.. Pattern Recognition. Cham: Springer, 2017, pp. 401-412. Lecture Notes in Computer Science. 10496. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-66708-9. Available under: doi: 10.1007/978-3-319-66709-6_32

Zusammenfassung

We present a reconstruction pipeline for a large-scale 3D environment viewed by a single moving RGB-D camera. Our approach combines advantages of fast and direct, regularization-free depth fusion and accurate, but costly variational schemes. The scene’s depth geometry is extracted from each camera view and efficiently integrated into a large, dense grid as a truncated signed distance function, which is organized in an octree. To account for noisy real-world input data, variational range image integration is performed in local regions of the volume directly on this octree structure. We focus on algorithms which are easily parallelizable on GPUs, allowing the pipeline to be used in real-time scenarios where the user can interactively view the reconstruction and adapt camera motion as required.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

39th German Conference : GCPR 2017 Proceedings, 12. Sept. 2017 - 15. Sept. 2017, Basel, Switzerland
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690MARNIOK, Nico, Ole JOHANNSEN, Bastian GOLDLÜCKE, 2017. An Efficient Octree Design for Local Variational Range Image Fusion. 39th German Conference : GCPR 2017 Proceedings. Basel, Switzerland, 12. Sept. 2017 - 15. Sept. 2017. In: ROTH, Volker, ed., Thomas VETTER, ed.. Pattern Recognition. Cham: Springer, 2017, pp. 401-412. Lecture Notes in Computer Science. 10496. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-66708-9. Available under: doi: 10.1007/978-3-319-66709-6_32
BibTex
@inproceedings{Marniok2017Effic-42780,
  year={2017},
  doi={10.1007/978-3-319-66709-6_32},
  title={An Efficient Octree Design for Local Variational Range Image Fusion},
  number={10496},
  isbn={978-3-319-66708-9},
  issn={0302-9743},
  publisher={Springer},
  address={Cham},
  series={Lecture Notes in Computer Science},
  booktitle={Pattern Recognition},
  pages={401--412},
  editor={Roth, Volker and Vetter, Thomas},
  author={Marniok, Nico and Johannsen, Ole and Goldlücke, Bastian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42780">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-07-04T16:38:02Z</dcterms:available>
    <dc:contributor>Goldlücke, Bastian</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Marniok, Nico</dc:contributor>
    <dc:creator>Marniok, Nico</dc:creator>
    <dc:creator>Johannsen, Ole</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Johannsen, Ole</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42780"/>
    <dcterms:title>An Efficient Octree Design for Local Variational Range Image Fusion</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-07-04T16:38:02Z</dc:date>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract xml:lang="eng">We present a reconstruction pipeline for a large-scale 3D environment viewed by a single moving RGB-D camera. Our approach combines advantages of fast and direct, regularization-free depth fusion and accurate, but costly variational schemes. The scene’s depth geometry is extracted from each camera view and efficiently integrated into a large, dense grid as a truncated signed distance function, which is organized in an octree. To account for noisy real-world input data, variational range image integration is performed in local regions of the volume directly on this octree structure. We focus on algorithms which are easily parallelizable on GPUs, allowing the pipeline to be used in real-time scenarios where the user can interactively view the reconstruction and adapt camera motion as required.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Goldlücke, Bastian</dc:creator>
    <dcterms:issued>2017</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen