An Efficient Octree Design for Local Variational Range Image Fusion

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2017
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
European Union (EU): 336978
Projekt
LIA - Light Field Imaging and Analysis
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
ROTH, Volker, ed., Thomas VETTER, ed.. Pattern Recognition. Cham: Springer, 2017, pp. 401-412. Lecture Notes in Computer Science. 10496. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-66708-9. Available under: doi: 10.1007/978-3-319-66709-6_32
Zusammenfassung

We present a reconstruction pipeline for a large-scale 3D environment viewed by a single moving RGB-D camera. Our approach combines advantages of fast and direct, regularization-free depth fusion and accurate, but costly variational schemes. The scene’s depth geometry is extracted from each camera view and efficiently integrated into a large, dense grid as a truncated signed distance function, which is organized in an octree. To account for noisy real-world input data, variational range image integration is performed in local regions of the volume directly on this octree structure. We focus on algorithms which are easily parallelizable on GPUs, allowing the pipeline to be used in real-time scenarios where the user can interactively view the reconstruction and adapt camera motion as required.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
39th German Conference : GCPR 2017 Proceedings, 12. Sept. 2017 - 15. Sept. 2017, Basel, Switzerland
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690MARNIOK, Nico, Ole JOHANNSEN, Bastian GOLDLÜCKE, 2017. An Efficient Octree Design for Local Variational Range Image Fusion. 39th German Conference : GCPR 2017 Proceedings. Basel, Switzerland, 12. Sept. 2017 - 15. Sept. 2017. In: ROTH, Volker, ed., Thomas VETTER, ed.. Pattern Recognition. Cham: Springer, 2017, pp. 401-412. Lecture Notes in Computer Science. 10496. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-66708-9. Available under: doi: 10.1007/978-3-319-66709-6_32
BibTex
@inproceedings{Marniok2017Effic-42780,
  year={2017},
  doi={10.1007/978-3-319-66709-6_32},
  title={An Efficient Octree Design for Local Variational Range Image Fusion},
  number={10496},
  isbn={978-3-319-66708-9},
  issn={0302-9743},
  publisher={Springer},
  address={Cham},
  series={Lecture Notes in Computer Science},
  booktitle={Pattern Recognition},
  pages={401--412},
  editor={Roth, Volker and Vetter, Thomas},
  author={Marniok, Nico and Johannsen, Ole and Goldlücke, Bastian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42780">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-07-04T16:38:02Z</dcterms:available>
    <dc:contributor>Goldlücke, Bastian</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Marniok, Nico</dc:contributor>
    <dc:creator>Marniok, Nico</dc:creator>
    <dc:creator>Johannsen, Ole</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Johannsen, Ole</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42780"/>
    <dcterms:title>An Efficient Octree Design for Local Variational Range Image Fusion</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-07-04T16:38:02Z</dc:date>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract xml:lang="eng">We present a reconstruction pipeline for a large-scale 3D environment viewed by a single moving RGB-D camera. Our approach combines advantages of fast and direct, regularization-free depth fusion and accurate, but costly variational schemes. The scene’s depth geometry is extracted from each camera view and efficiently integrated into a large, dense grid as a truncated signed distance function, which is organized in an octree. To account for noisy real-world input data, variational range image integration is performed in local regions of the volume directly on this octree structure. We focus on algorithms which are easily parallelizable on GPUs, allowing the pipeline to be used in real-time scenarios where the user can interactively view the reconstruction and adapt camera motion as required.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Goldlücke, Bastian</dc:creator>
    <dcterms:issued>2017</dcterms:issued>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen