Publikation: An Efficient Octree Design for Local Variational Range Image Fusion
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We present a reconstruction pipeline for a large-scale 3D environment viewed by a single moving RGB-D camera. Our approach combines advantages of fast and direct, regularization-free depth fusion and accurate, but costly variational schemes. The scene’s depth geometry is extracted from each camera view and efficiently integrated into a large, dense grid as a truncated signed distance function, which is organized in an octree. To account for noisy real-world input data, variational range image integration is performed in local regions of the volume directly on this octree structure. We focus on algorithms which are easily parallelizable on GPUs, allowing the pipeline to be used in real-time scenarios where the user can interactively view the reconstruction and adapt camera motion as required.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
MARNIOK, Nico, Ole JOHANNSEN, Bastian GOLDLÜCKE, 2017. An Efficient Octree Design for Local Variational Range Image Fusion. 39th German Conference : GCPR 2017 Proceedings. Basel, Switzerland, 12. Sept. 2017 - 15. Sept. 2017. In: ROTH, Volker, ed., Thomas VETTER, ed.. Pattern Recognition. Cham: Springer, 2017, pp. 401-412. Lecture Notes in Computer Science. 10496. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-66708-9. Available under: doi: 10.1007/978-3-319-66709-6_32BibTex
@inproceedings{Marniok2017Effic-42780, year={2017}, doi={10.1007/978-3-319-66709-6_32}, title={An Efficient Octree Design for Local Variational Range Image Fusion}, number={10496}, isbn={978-3-319-66708-9}, issn={0302-9743}, publisher={Springer}, address={Cham}, series={Lecture Notes in Computer Science}, booktitle={Pattern Recognition}, pages={401--412}, editor={Roth, Volker and Vetter, Thomas}, author={Marniok, Nico and Johannsen, Ole and Goldlücke, Bastian} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42780"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-07-04T16:38:02Z</dcterms:available> <dc:contributor>Goldlücke, Bastian</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Marniok, Nico</dc:contributor> <dc:creator>Marniok, Nico</dc:creator> <dc:creator>Johannsen, Ole</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Johannsen, Ole</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42780"/> <dcterms:title>An Efficient Octree Design for Local Variational Range Image Fusion</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-07-04T16:38:02Z</dc:date> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">We present a reconstruction pipeline for a large-scale 3D environment viewed by a single moving RGB-D camera. Our approach combines advantages of fast and direct, regularization-free depth fusion and accurate, but costly variational schemes. The scene’s depth geometry is extracted from each camera view and efficiently integrated into a large, dense grid as a truncated signed distance function, which is organized in an octree. To account for noisy real-world input data, variational range image integration is performed in local regions of the volume directly on this octree structure. We focus on algorithms which are easily parallelizable on GPUs, allowing the pipeline to be used in real-time scenarios where the user can interactively view the reconstruction and adapt camera motion as required.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Goldlücke, Bastian</dc:creator> <dcterms:issued>2017</dcterms:issued> </rdf:Description> </rdf:RDF>