Publikation:

Quantifying the Economic and Cultural Biases of Social Media through Trending Topics

Lade...
Vorschaubild

Dateien

Carrascosa_2-1t3y2dkptst1r8.pdf
Carrascosa_2-1t3y2dkptst1r8.pdfGröße: 1.22 MBDownloads: 59

Datum

2015

Autor:innen

Carrascosa, Juan Miguel
Cuevas, Ruben
González, Roberto
Azcorra, Arturo

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

PLoS one. Public Library of Science (PLoS). 2015, 10(7), e0134407. eISSN 1932-6203. Available under: doi: 10.1371/journal.pone.0134407

Zusammenfassung

Online social media has recently irrupted as the last major venue for the propagation of news and cultural content, competing with traditional mass media and allowing citizens to access new sources of information. In this paper, we study collectively filtered news and popular content in Twitter, known as Trending Topics (TTs), to quantify the extent to which they show similar biases known for mass media. We use two datasets collected in 2013 and 2014, including more than 300.000 TTs from 62 countries. The existing patterns of leader-follower relationships among countries reveal systemic biases known for mass media: Countries concentrate their attention to small groups of other countries, generating a pattern of centralization in which TTs follow the gradient of wealth across countries. At the same time, we find subjective biases within language communities linked to the cultural similarity of countries, in which countries with closer cultures and shared languages tend to follow each other’s TTs. Moreover, using a novel methodology based on the Google News service, we study the influence of mass media in TTs for four countries. We find that roughly half of the TTs in Twitter overlap with news reported by mass media, and that the rest of TTs are more likely to spread internationally within Twitter. Our results confirm that online social media have the power to independently spread content beyond mass media, but at the same time social media content follows economic incentives and is subject to cultural factors and language barriers.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
320 Politik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690CARRASCOSA, Juan Miguel, Ruben CUEVAS, Roberto GONZÁLEZ, Arturo AZCORRA, David GARCIA, 2015. Quantifying the Economic and Cultural Biases of Social Media through Trending Topics. In: PLoS one. Public Library of Science (PLoS). 2015, 10(7), e0134407. eISSN 1932-6203. Available under: doi: 10.1371/journal.pone.0134407
BibTex
@article{Carrascosa2015Quant-59901,
  year={2015},
  doi={10.1371/journal.pone.0134407},
  title={Quantifying the Economic and Cultural Biases of Social Media through Trending Topics},
  number={7},
  volume={10},
  journal={PLoS one},
  author={Carrascosa, Juan Miguel and Cuevas, Ruben and González, Roberto and Azcorra, Arturo and Garcia, David},
  note={Article Number: e0134407}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59901">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-24T08:20:46Z</dc:date>
    <dc:contributor>Cuevas, Ruben</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59901/1/Carrascosa_2-1t3y2dkptst1r8.pdf"/>
    <dc:contributor>Garcia, David</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:creator>Carrascosa, Juan Miguel</dc:creator>
    <dc:creator>Cuevas, Ruben</dc:creator>
    <dc:language>eng</dc:language>
    <dc:creator>Azcorra, Arturo</dc:creator>
    <dcterms:abstract xml:lang="eng">Online social media has recently irrupted as the last major venue for the propagation of news and cultural content, competing with traditional mass media and allowing citizens to access new sources of information. In this paper, we study collectively filtered news and popular content in Twitter, known as Trending Topics (TTs), to quantify the extent to which they show similar biases known for mass media. We use two datasets collected in 2013 and 2014, including more than 300.000 TTs from 62 countries. The existing patterns of leader-follower relationships among countries reveal systemic biases known for mass media: Countries concentrate their attention to small groups of other countries, generating a pattern of centralization in which TTs follow the gradient of wealth across countries. At the same time, we find subjective biases within language communities linked to the cultural similarity of countries, in which countries with closer cultures and shared languages tend to follow each other’s TTs. Moreover, using a novel methodology based on the Google News service, we study the influence of mass media in TTs for four countries. We find that roughly half of the TTs in Twitter overlap with news reported by mass media, and that the rest of TTs are more likely to spread internationally within Twitter. Our results confirm that online social media have the power to independently spread content beyond mass media, but at the same time social media content follows economic incentives and is subject to cultural factors and language barriers.</dcterms:abstract>
    <dc:contributor>González, Roberto</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-24T08:20:46Z</dcterms:available>
    <dc:contributor>Carrascosa, Juan Miguel</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:contributor>Azcorra, Arturo</dc:contributor>
    <dc:creator>González, Roberto</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59901"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:creator>Garcia, David</dc:creator>
    <dcterms:issued>2015</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59901/1/Carrascosa_2-1t3y2dkptst1r8.pdf"/>
    <dcterms:title>Quantifying the Economic and Cultural Biases of Social Media through Trending Topics</dcterms:title>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen