Publikation:

Epitaxial ZnxFe3−xO4 thin films : A spintronic material with tunable electrical and magnetic properties

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2009

Autor:innen

Venkateshvaran, Deepak
Althammer, Matthias
Nielsen, Andrea
Geprägs, Stephan
Ramachandra Rao, M. S.
Opel, Matthias
Gross, Rudolf

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Physical Review B. American Physical Society (APS). 2009, 79(13), 134405. ISSN 2469-9950. eISSN 2469-9969. Available under: doi: 10.1103/PhysRevB.79.134405

Zusammenfassung

The ferrimagnetic spinel oxide ZnxFe3−xO4 combines high Curie temperature and spin polarization with tunable electrical and magnetic properties, making it a promising functional material for spintronic devices. We have grown epitaxial ZnxFe3−xO4 thin films (0≤x≤0.9) on MgO(001) substrates with excellent structural properties both in pure Ar atmosphere and an Ar/O2 mixture by laser molecular beam epitaxy and systematically studied their structural, magnetotransport, and magnetic properties. We find that the electrical conductivity and the saturation magnetization can be tuned over a wide range (102…104 Ω−1 m−1 and 1.0…3.2 μB/f.u. at room temperature) by Zn substitution and/or finite oxygen partial pressure during growth. Our extensive characterization of the films provides a clear picture of the underlying physics of the spinel ferrimagnet ZnxFe3−xO4 with antiparallel Fe moments on the A and B sublattices: (i) Zn substitution removes both Fe3+A moments from the A sublattice and itinerant charge carriers from the B sublattice; (ii) growth in finite oxygen partial pressure generates Fe vacancies on the B sublattice also removing itinerant charge carriers; and (iii) application of both Zn substitution and excess oxygen results in a compensation effect as Zn substitution partially removes the Fe vacancies. Both electrical conduction and magnetism are determined by the density and hopping amplitude of the itinerant charge carriers on the B sublattice, providing electrical conduction and ferromagnetic double exchange between the mixed-valent Fe2+B/Fe3+B ions on the B sublattice. A decrease (increase) in charge carrier density results in a weakening (strengthening) of double exchange and thereby a decrease (increase) in the conductivity and the saturation magnetization. This scenario is confirmed by the observation that the saturation magnetization scales with the longitudinal conductivity. The combination of tailored ZnxFe3−xO4 films with semiconductor materials such as ZnO in multifunctional heterostructures seems to be particularly appealing.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690VENKATESHVARAN, Deepak, Matthias ALTHAMMER, Andrea NIELSEN, Stephan GEPRÄGS, M. S. RAMACHANDRA RAO, Sebastian T. B. GOENNENWEIN, Matthias OPEL, Rudolf GROSS, 2009. Epitaxial ZnxFe3−xO4 thin films : A spintronic material with tunable electrical and magnetic properties. In: Physical Review B. American Physical Society (APS). 2009, 79(13), 134405. ISSN 2469-9950. eISSN 2469-9969. Available under: doi: 10.1103/PhysRevB.79.134405
BibTex
@article{Venkateshvaran2009Epita-53287,
  year={2009},
  doi={10.1103/PhysRevB.79.134405},
  title={Epitaxial Zn<sub>x</sub>Fe<sub>3−x</sub>O<sub>4</sub> thin films : A spintronic material with tunable electrical and magnetic properties},
  number={13},
  volume={79},
  issn={2469-9950},
  journal={Physical Review B},
  author={Venkateshvaran, Deepak and Althammer, Matthias and Nielsen, Andrea and Geprägs, Stephan and Ramachandra Rao, M. S. and Goennenwein, Sebastian T. B. and Opel, Matthias and Gross, Rudolf},
  note={Article Number: 134405}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53287">
    <dc:contributor>Althammer, Matthias</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Nielsen, Andrea</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-29T10:42:25Z</dcterms:available>
    <dc:contributor>Nielsen, Andrea</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-29T10:42:25Z</dc:date>
    <dcterms:title>Epitaxial Zn&lt;sub&gt;x&lt;/sub&gt;Fe&lt;sub&gt;3−x&lt;/sub&gt;O&lt;sub&gt;4&lt;/sub&gt; thin films : A spintronic material with tunable electrical and magnetic properties</dcterms:title>
    <dc:creator>Venkateshvaran, Deepak</dc:creator>
    <dc:creator>Ramachandra Rao, M. S.</dc:creator>
    <dc:contributor>Opel, Matthias</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Goennenwein, Sebastian T. B.</dc:creator>
    <dc:contributor>Ramachandra Rao, M. S.</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53287"/>
    <dc:contributor>Venkateshvaran, Deepak</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:creator>Althammer, Matthias</dc:creator>
    <dc:creator>Geprägs, Stephan</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2009</dcterms:issued>
    <dc:contributor>Geprägs, Stephan</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:contributor>Goennenwein, Sebastian T. B.</dc:contributor>
    <dc:creator>Gross, Rudolf</dc:creator>
    <dcterms:abstract xml:lang="eng">The ferrimagnetic spinel oxide Zn&lt;sub&gt;x&lt;/sub&gt;Fe&lt;sub&gt;3−x&lt;/sub&gt;O&lt;sub&gt;4&lt;/sub&gt; combines high Curie temperature and spin polarization with tunable electrical and magnetic properties, making it a promising functional material for spintronic devices. We have grown epitaxial Zn&lt;sub&gt;x&lt;/sub&gt;Fe&lt;sub&gt;3−x&lt;/sub&gt;O&lt;sub&gt;4&lt;/sub&gt; thin films (0≤x≤0.9) on MgO(001) substrates with excellent structural properties both in pure Ar atmosphere and an Ar/O2 mixture by laser molecular beam epitaxy and systematically studied their structural, magnetotransport, and magnetic properties. We find that the electrical conductivity and the saturation magnetization can be tuned over a wide range (10&lt;sup&gt;2&lt;/sup&gt;…10&lt;sup&gt;4&lt;/sup&gt; Ω&lt;sup&gt;−1&lt;/sup&gt; m&lt;sup&gt;−1&lt;/sup&gt; and 1.0…3.2 μ&lt;sub&gt;B&lt;/sub&gt;/f.u. at room temperature) by Zn substitution and/or finite oxygen partial pressure during growth. Our extensive characterization of the films provides a clear picture of the underlying physics of the spinel ferrimagnet Zn&lt;sub&gt;x&lt;/sub&gt;Fe&lt;sub&gt;3−x&lt;/sub&gt;O&lt;sub&gt;4&lt;/sub&gt; with antiparallel Fe moments on the A and B sublattices: (i) Zn substitution removes both Fe&lt;sup&gt;3+&lt;/sup&gt;&lt;sub&gt;A&lt;/sub&gt; moments from the A sublattice and itinerant charge carriers from the B sublattice; (ii) growth in finite oxygen partial pressure generates Fe vacancies on the B sublattice also removing itinerant charge carriers; and (iii) application of both Zn substitution and excess oxygen results in a compensation effect as Zn substitution partially removes the Fe vacancies. Both electrical conduction and magnetism are determined by the density and hopping amplitude of the itinerant charge carriers on the B sublattice, providing electrical conduction and ferromagnetic double exchange between the mixed-valent Fe&lt;sup&gt;2+&lt;/sup&gt;&lt;sub&gt;B&lt;/sub&gt;/Fe&lt;sup&gt;3+&lt;/sup&gt;&lt;sub&gt;B&lt;/sub&gt; ions on the B sublattice. A decrease (increase) in charge carrier density results in a weakening (strengthening) of double exchange and thereby a decrease (increase) in the conductivity and the saturation magnetization. This scenario is confirmed by the observation that the saturation magnetization scales with the longitudinal conductivity. The combination of tailored Zn&lt;sub&gt;x&lt;/sub&gt;Fe&lt;sub&gt;3−x&lt;/sub&gt;O4 films with semiconductor materials such as ZnO in multifunctional heterostructures seems to be particularly appealing.</dcterms:abstract>
    <dc:creator>Opel, Matthias</dc:creator>
    <dc:contributor>Gross, Rudolf</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen