Publikation: Epitaxial ZnxFe3−xO4 thin films : A spintronic material with tunable electrical and magnetic properties
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The ferrimagnetic spinel oxide ZnxFe3−xO4 combines high Curie temperature and spin polarization with tunable electrical and magnetic properties, making it a promising functional material for spintronic devices. We have grown epitaxial ZnxFe3−xO4 thin films (0≤x≤0.9) on MgO(001) substrates with excellent structural properties both in pure Ar atmosphere and an Ar/O2 mixture by laser molecular beam epitaxy and systematically studied their structural, magnetotransport, and magnetic properties. We find that the electrical conductivity and the saturation magnetization can be tuned over a wide range (102…104 Ω−1 m−1 and 1.0…3.2 μB/f.u. at room temperature) by Zn substitution and/or finite oxygen partial pressure during growth. Our extensive characterization of the films provides a clear picture of the underlying physics of the spinel ferrimagnet ZnxFe3−xO4 with antiparallel Fe moments on the A and B sublattices: (i) Zn substitution removes both Fe3+A moments from the A sublattice and itinerant charge carriers from the B sublattice; (ii) growth in finite oxygen partial pressure generates Fe vacancies on the B sublattice also removing itinerant charge carriers; and (iii) application of both Zn substitution and excess oxygen results in a compensation effect as Zn substitution partially removes the Fe vacancies. Both electrical conduction and magnetism are determined by the density and hopping amplitude of the itinerant charge carriers on the B sublattice, providing electrical conduction and ferromagnetic double exchange between the mixed-valent Fe2+B/Fe3+B ions on the B sublattice. A decrease (increase) in charge carrier density results in a weakening (strengthening) of double exchange and thereby a decrease (increase) in the conductivity and the saturation magnetization. This scenario is confirmed by the observation that the saturation magnetization scales with the longitudinal conductivity. The combination of tailored ZnxFe3−xO4 films with semiconductor materials such as ZnO in multifunctional heterostructures seems to be particularly appealing.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
VENKATESHVARAN, Deepak, Matthias ALTHAMMER, Andrea NIELSEN, Stephan GEPRÄGS, M. S. RAMACHANDRA RAO, Sebastian T. B. GOENNENWEIN, Matthias OPEL, Rudolf GROSS, 2009. Epitaxial ZnxFe3−xO4 thin films : A spintronic material with tunable electrical and magnetic properties. In: Physical Review B. American Physical Society (APS). 2009, 79(13), 134405. ISSN 2469-9950. eISSN 2469-9969. Available under: doi: 10.1103/PhysRevB.79.134405BibTex
@article{Venkateshvaran2009Epita-53287, year={2009}, doi={10.1103/PhysRevB.79.134405}, title={Epitaxial Zn<sub>x</sub>Fe<sub>3−x</sub>O<sub>4</sub> thin films : A spintronic material with tunable electrical and magnetic properties}, number={13}, volume={79}, issn={2469-9950}, journal={Physical Review B}, author={Venkateshvaran, Deepak and Althammer, Matthias and Nielsen, Andrea and Geprägs, Stephan and Ramachandra Rao, M. S. and Goennenwein, Sebastian T. B. and Opel, Matthias and Gross, Rudolf}, note={Article Number: 134405} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53287"> <dc:contributor>Althammer, Matthias</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Nielsen, Andrea</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-29T10:42:25Z</dcterms:available> <dc:contributor>Nielsen, Andrea</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-29T10:42:25Z</dc:date> <dcterms:title>Epitaxial Zn<sub>x</sub>Fe<sub>3−x</sub>O<sub>4</sub> thin films : A spintronic material with tunable electrical and magnetic properties</dcterms:title> <dc:creator>Venkateshvaran, Deepak</dc:creator> <dc:creator>Ramachandra Rao, M. S.</dc:creator> <dc:contributor>Opel, Matthias</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Goennenwein, Sebastian T. B.</dc:creator> <dc:contributor>Ramachandra Rao, M. S.</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53287"/> <dc:contributor>Venkateshvaran, Deepak</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:creator>Althammer, Matthias</dc:creator> <dc:creator>Geprägs, Stephan</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2009</dcterms:issued> <dc:contributor>Geprägs, Stephan</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Goennenwein, Sebastian T. B.</dc:contributor> <dc:creator>Gross, Rudolf</dc:creator> <dcterms:abstract xml:lang="eng">The ferrimagnetic spinel oxide Zn<sub>x</sub>Fe<sub>3−x</sub>O<sub>4</sub> combines high Curie temperature and spin polarization with tunable electrical and magnetic properties, making it a promising functional material for spintronic devices. We have grown epitaxial Zn<sub>x</sub>Fe<sub>3−x</sub>O<sub>4</sub> thin films (0≤x≤0.9) on MgO(001) substrates with excellent structural properties both in pure Ar atmosphere and an Ar/O2 mixture by laser molecular beam epitaxy and systematically studied their structural, magnetotransport, and magnetic properties. We find that the electrical conductivity and the saturation magnetization can be tuned over a wide range (10<sup>2</sup>…10<sup>4</sup> Ω<sup>−1</sup> m<sup>−1</sup> and 1.0…3.2 μ<sub>B</sub>/f.u. at room temperature) by Zn substitution and/or finite oxygen partial pressure during growth. Our extensive characterization of the films provides a clear picture of the underlying physics of the spinel ferrimagnet Zn<sub>x</sub>Fe<sub>3−x</sub>O<sub>4</sub> with antiparallel Fe moments on the A and B sublattices: (i) Zn substitution removes both Fe<sup>3+</sup><sub>A</sub> moments from the A sublattice and itinerant charge carriers from the B sublattice; (ii) growth in finite oxygen partial pressure generates Fe vacancies on the B sublattice also removing itinerant charge carriers; and (iii) application of both Zn substitution and excess oxygen results in a compensation effect as Zn substitution partially removes the Fe vacancies. Both electrical conduction and magnetism are determined by the density and hopping amplitude of the itinerant charge carriers on the B sublattice, providing electrical conduction and ferromagnetic double exchange between the mixed-valent Fe<sup>2+</sup><sub>B</sub>/Fe<sup>3+</sup><sub>B</sub> ions on the B sublattice. A decrease (increase) in charge carrier density results in a weakening (strengthening) of double exchange and thereby a decrease (increase) in the conductivity and the saturation magnetization. This scenario is confirmed by the observation that the saturation magnetization scales with the longitudinal conductivity. The combination of tailored Zn<sub>x</sub>Fe<sub>3−x</sub>O4 films with semiconductor materials such as ZnO in multifunctional heterostructures seems to be particularly appealing.</dcterms:abstract> <dc:creator>Opel, Matthias</dc:creator> <dc:contributor>Gross, Rudolf</dc:contributor> </rdf:Description> </rdf:RDF>