Publikation: Invariant manifolds for random parabolic evolution equations with almost sectorial operators
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2025
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Stochastics and Dynamics. World Scientific Publishing. 2025, 25(06), 2530001. ISSN 0219-4937. eISSN 1793-6799. Verfügbar unter: doi: 10.1142/s0219493725300013
Zusammenfassung
In this paper, we develop a way of analyzing the random dynamics of stochastic evolution equations with a non-dense domain. Such problems cover several types of evolution equations. We are particularly interested in evolution equations with non-homogeneous boundary conditions of white noise type. We prove the existence of stable, unstable, and center manifolds around a stationary trajectory by combining integrated semigroup theory and invariant manifold theory. The results are applied to stochastic parabolic equations with white noise at the boundary.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
GHANI VARZANEH, Mayzar, Fatima Z. LAHBIRI, Sebastian RIEDEL, 2025. Invariant manifolds for random parabolic evolution equations with almost sectorial operators. In: Stochastics and Dynamics. World Scientific Publishing. 2025, 25(06), 2530001. ISSN 0219-4937. eISSN 1793-6799. Verfügbar unter: doi: 10.1142/s0219493725300013BibTex
@article{GhaniVarzaneh2025-09Invar-74683,
title={Invariant manifolds for random parabolic evolution equations with almost sectorial operators},
year={2025},
doi={10.1142/s0219493725300013},
number={06},
volume={25},
issn={0219-4937},
journal={Stochastics and Dynamics},
author={Ghani Varzaneh, Mayzar and Lahbiri, Fatima Z. and Riedel, Sebastian},
note={Article Number: 2530001}
}RDF
<rdf:RDF
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:bibo="http://purl.org/ontology/bibo/"
xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:void="http://rdfs.org/ns/void#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >
<rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/74683">
<dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
<dc:contributor>Riedel, Sebastian</dc:contributor>
<dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-10-07T05:48:55Z</dc:date>
<dc:creator>Ghani Varzaneh, Mayzar</dc:creator>
<void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
<dc:contributor>Lahbiri, Fatima Z.</dc:contributor>
<dc:language>eng</dc:language>
<dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
<dcterms:abstract>In this paper, we develop a way of analyzing the random dynamics of stochastic evolution equations with a non-dense domain. Such problems cover several types of evolution equations. We are particularly interested in evolution equations with non-homogeneous boundary conditions of white noise type. We prove the existence of stable, unstable, and center manifolds around a stationary trajectory by combining integrated semigroup theory and invariant manifold theory. The results are applied to stochastic parabolic equations with white noise at the boundary.</dcterms:abstract>
<bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/74683"/>
<foaf:homepage rdf:resource="http://localhost:8080/"/>
<dcterms:title>Invariant manifolds for random parabolic evolution equations with almost sectorial operators</dcterms:title>
<dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-10-07T05:48:55Z</dcterms:available>
<dc:contributor>Ghani Varzaneh, Mayzar</dc:contributor>
<dcterms:issued>2025-09</dcterms:issued>
<dc:creator>Riedel, Sebastian</dc:creator>
<dc:creator>Lahbiri, Fatima Z.</dc:creator>
</rdf:Description>
</rdf:RDF>Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt