Publikation:

Asymptotic stability in a second-order symmetric hyperbolic system modeling the relativistic dynamics of viscous heat-conductive fluids with diffusion

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2020

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Differential Equations. Elsevier. 2020, 268(2), pp. 825-851. ISSN 0022-0396. eISSN 1090-2732. Available under: doi: 10.1016/j.jde.2019.08.028

Zusammenfassung

This paper establishes nonlinear asymptotic stability of homogeneous reference states in dissipative relativistic fluid dynamics. The result is a counterpart for general non-barotropic fluids of one obtained by the author in a previous paper on barotropic fluids. Differently from that of this earlier finding, the proof here crucially relies on analyzing the corresponding linearized problem in Fourier space, with different scalings for small and large wave numbers.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

fluid dynamics, partial differential equations, symmetric hyperbolictiy, quasi-linearity, long-time existence, asymptotic stability

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SROCZINSKI, Matthias, 2020. Asymptotic stability in a second-order symmetric hyperbolic system modeling the relativistic dynamics of viscous heat-conductive fluids with diffusion. In: Journal of Differential Equations. Elsevier. 2020, 268(2), pp. 825-851. ISSN 0022-0396. eISSN 1090-2732. Available under: doi: 10.1016/j.jde.2019.08.028
BibTex
@article{Sroczinski2020-01Asymp-48164,
  year={2020},
  doi={10.1016/j.jde.2019.08.028},
  title={Asymptotic stability in a second-order symmetric hyperbolic system modeling the relativistic dynamics of viscous heat-conductive fluids with diffusion},
  number={2},
  volume={268},
  issn={0022-0396},
  journal={Journal of Differential Equations},
  pages={825--851},
  author={Sroczinski, Matthias}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/48164">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-01-08T08:40:37Z</dcterms:available>
    <dcterms:title>Asymptotic stability in a second-order symmetric hyperbolic system modeling the relativistic dynamics of viscous heat-conductive fluids with diffusion</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-01-08T08:40:37Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/48164"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Sroczinski, Matthias</dc:creator>
    <dc:contributor>Sroczinski, Matthias</dc:contributor>
    <dcterms:abstract xml:lang="eng">This paper establishes nonlinear asymptotic stability of homogeneous reference states in dissipative relativistic fluid dynamics. The result is a counterpart for general non-barotropic fluids of one obtained by the author in a previous paper on barotropic fluids. Differently from that of this earlier finding, the proof here crucially relies on analyzing the corresponding linearized problem in Fourier space, with different scalings for small and large wave numbers.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2020-01</dcterms:issued>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen