Publikation: Identifying Most Predictive Items
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Frequent itemsets and association rules are generally accepted concepts in analyzing item-based databases. The Apriori-framework was developed for analyzing categorical data. However, many data include numerical values. Therefore, most existing techniques transform numerical values to categorical values. The transformation is done such that the rules are optimal with respect to support or confidence.
In this paper we choose a different approach for analyzing data with numerical and categorical data. We present methods to identify items, which have a strong impact on a given numerical attribute. With other words, we want to identify items, whose occurrence in an itemset allows us to make predictions about the distribution function of the numerical attribute.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KEIM, Daniel A., Markus WAWRYNIUK, 2004. Identifying Most Predictive Items. Proceedings of the Intl. Workshop on Pattern Representation and Management, Heraklion, Hellas, March 18, 2004. Heraklion, Hellas, 18. März 2004 - 18. März 2004. In: THEODORIDIS, Yannis, ed., Panos VASSILIADIS, ed.. PaRMa 2004 : Proceedings of the Intl. Workshop on Pattern Representation and Management, Heraklion, Hellas, March 18, 2004. 2004, 6. CEUR Workshop Proceedings. 96. ISSN 1613-0073BibTex
@inproceedings{Keim2004Ident-41036, year={2004}, title={Identifying Most Predictive Items}, url={http://dblp.org/db/conf/parma/parma2004.html}, number={96}, issn={1613-0073}, series={CEUR Workshop Proceedings}, booktitle={PaRMa 2004 : Proceedings of the Intl. Workshop on Pattern Representation and Management, Heraklion, Hellas, March 18, 2004}, editor={Theodoridis, Yannis and Vassiliadis, Panos}, author={Keim, Daniel A. and Wawryniuk, Markus}, note={Article Number: 6} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41036"> <dcterms:abstract xml:lang="eng">Frequent itemsets and association rules are generally accepted concepts in analyzing item-based databases. The Apriori-framework was developed for analyzing categorical data. However, many data include numerical values. Therefore, most existing techniques transform numerical values to categorical values. The transformation is done such that the rules are optimal with respect to support or confidence.<br />In this paper we choose a different approach for analyzing data with numerical and categorical data. We present methods to identify items, which have a strong impact on a given numerical attribute. With other words, we want to identify items, whose occurrence in an itemset allows us to make predictions about the distribution function of the numerical attribute.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Wawryniuk, Markus</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-01-10T10:59:06Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:issued>2004</dcterms:issued> <dc:contributor>Wawryniuk, Markus</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-01-10T10:59:06Z</dc:date> <dcterms:title>Identifying Most Predictive Items</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41036"/> <dc:creator>Keim, Daniel A.</dc:creator> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>