Publikation:

Identifying Most Predictive Items

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2004

Autor:innen

Wawryniuk, Markus

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

THEODORIDIS, Yannis, ed., Panos VASSILIADIS, ed.. PaRMa 2004 : Proceedings of the Intl. Workshop on Pattern Representation and Management, Heraklion, Hellas, March 18, 2004. 2004, 6. CEUR Workshop Proceedings. 96. ISSN 1613-0073

Zusammenfassung

Frequent itemsets and association rules are generally accepted concepts in analyzing item-based databases. The Apriori-framework was developed for analyzing categorical data. However, many data include numerical values. Therefore, most existing techniques transform numerical values to categorical values. The transformation is done such that the rules are optimal with respect to support or confidence.
In this paper we choose a different approach for analyzing data with numerical and categorical data. We present methods to identify items, which have a strong impact on a given numerical attribute. With other words, we want to identify items, whose occurrence in an itemset allows us to make predictions about the distribution function of the numerical attribute.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Proceedings of the Intl. Workshop on Pattern Representation and Management, Heraklion, Hellas, March 18, 2004, 18. März 2004 - 18. März 2004, Heraklion, Hellas
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KEIM, Daniel A., Markus WAWRYNIUK, 2004. Identifying Most Predictive Items. Proceedings of the Intl. Workshop on Pattern Representation and Management, Heraklion, Hellas, March 18, 2004. Heraklion, Hellas, 18. März 2004 - 18. März 2004. In: THEODORIDIS, Yannis, ed., Panos VASSILIADIS, ed.. PaRMa 2004 : Proceedings of the Intl. Workshop on Pattern Representation and Management, Heraklion, Hellas, March 18, 2004. 2004, 6. CEUR Workshop Proceedings. 96. ISSN 1613-0073
BibTex
@inproceedings{Keim2004Ident-41036,
  year={2004},
  title={Identifying Most Predictive Items},
  url={http://dblp.org/db/conf/parma/parma2004.html},
  number={96},
  issn={1613-0073},
  series={CEUR Workshop Proceedings},
  booktitle={PaRMa 2004 : Proceedings of the Intl. Workshop on Pattern Representation and Management, Heraklion, Hellas, March 18, 2004},
  editor={Theodoridis, Yannis and Vassiliadis, Panos},
  author={Keim, Daniel A. and Wawryniuk, Markus},
  note={Article Number: 6}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41036">
    <dcterms:abstract xml:lang="eng">Frequent itemsets and association rules are generally accepted concepts in analyzing item-based databases. The Apriori-framework was developed for analyzing categorical data. However, many data include numerical values. Therefore, most existing techniques transform numerical values to categorical values. The transformation is done such that the rules are optimal with respect to support or confidence.&lt;br /&gt;In this paper we choose a different approach for analyzing data with numerical and categorical data. We present methods to identify items, which have a strong impact on a given numerical attribute. With other words, we want to identify items, whose occurrence in an itemset allows us to make predictions about the distribution function of the numerical attribute.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Wawryniuk, Markus</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-01-10T10:59:06Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2004</dcterms:issued>
    <dc:contributor>Wawryniuk, Markus</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-01-10T10:59:06Z</dc:date>
    <dcterms:title>Identifying Most Predictive Items</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41036"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt

Prüfdatum der URL

2017-11-09

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen