Publikation: Geometric Properties of Runge-Kutta Discretizations for Nonautonomous Index 2 Differential Algebraic Systems
Lade...
Dateien
Datum
2001
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Preprint
Publikationsstatus
Published
Erschienen in
Zusammenfassung
We analyze Runge-Kutta discretizations applied to nonautonomous index 2 differential algebraic equations (DAE's) in semi-explicit form. It is shown that for half-explicit and projected Runge-Kutta methods there is an attractive invariant manifold for the discrete system which is close to the invariant manifold of the DAE. The proof combines reduction techniques to autonomous index 2 differential algebraic equations with some invariant manifold results of Schropp. The results support the favourable behavior of these Runge-Kutta methods applied to index 2 DAE's for t >= 0.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
SCHROPP, Johannes, 2001. Geometric Properties of Runge-Kutta Discretizations for Nonautonomous Index 2 Differential Algebraic SystemsBibTex
@unpublished{Schropp2001Geome-742,
year={2001},
title={Geometric Properties of Runge-Kutta Discretizations for Nonautonomous Index 2 Differential Algebraic Systems},
author={Schropp, Johannes}
}RDF
<rdf:RDF
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:bibo="http://purl.org/ontology/bibo/"
xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:void="http://rdfs.org/ns/void#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >
<rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/742">
<dc:language>eng</dc:language>
<dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/742/1/preprint_149.pdf"/>
<dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
<bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/742"/>
<dc:rights>terms-of-use</dc:rights>
<dcterms:abstract xml:lang="eng">We analyze Runge-Kutta discretizations applied to nonautonomous index 2 differential algebraic equations (DAE's) in semi-explicit form. It is shown that for half-explicit and projected Runge-Kutta methods there is an attractive invariant manifold for the discrete system which is close to the invariant manifold of the DAE. The proof combines reduction techniques to autonomous index 2 differential algebraic equations with some invariant manifold results of Schropp. The results support the favourable behavior of these Runge-Kutta methods applied to index 2 DAE's for t >= 0.</dcterms:abstract>
<dcterms:title>Geometric Properties of Runge-Kutta Discretizations for Nonautonomous Index 2 Differential Algebraic Systems</dcterms:title>
<dcterms:issued>2001</dcterms:issued>
<dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/742/1/preprint_149.pdf"/>
<dc:contributor>Schropp, Johannes</dc:contributor>
<dc:format>application/pdf</dc:format>
<dc:creator>Schropp, Johannes</dc:creator>
<foaf:homepage rdf:resource="http://localhost:8080/"/>
<dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:41Z</dc:date>
<dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
<dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
<void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
<dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:41Z</dcterms:available>
</rdf:Description>
</rdf:RDF>Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
