Use of metabolic glycoengineering and pharmacological inhibitors to assess lipid and protein sialylation on cells

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2023
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
European Union (EU): 964518
European Union (EU): 964537
Projekt
RISK-HUNT3R
Open Access-Veröffentlichung
Open Access Hybrid
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Neurochemistry. Wiley. 2023, 164(4), pp. 481-498. eISSN 1471-4159. Available under: doi: 10.1111/jnc.15737
Zusammenfassung

Metabolic glycoengineering (MGE) has been developed to visualize carbohydrates on live cells. The method allows the fluorescent labeling of sialic acid (Sia) sugar residues on neuronal plasma membranes. For instance, the efficiency of glycosylation along neurite membranes has been characterized as cell health measure in neurotoxicology. Using human dopaminergic neurons as model system, we asked here, whether it was possible to separately label diverse classes of biomolecules and to visualize them selectively on cells. Several approaches suggest that a large proportion of Sia rather incorporated in non-protein components of cell membranes than into glycoproteins. We made use here of deoxymannojirimycin (dMM), a non-toxic inhibitor of protein glycosylation, and of N-butyl-deoxynojirimycin (NBdNM) a well-tolerated inhibitor of lipid glycosylation, to develop a method of differential labeling of sialylated membrane lipids (lipid-Sia) or sialylated N-glycosylated proteins (protein-Sia) on live neurons. The time resolution at which Sia modification of lipids/proteins was observable was in the range of few hours. The approach was then extended to several other cell types. Using this technique of 'target-specific MGE', we found that in dopaminergic or sensory neurons > 60% of Sia is lipid bound, and thus polysialic acid-neural cell adhesion molecule (PSA-NCAM) cannot be considered the major sialylated membrane component. Different from neurons, most Sia was bound to protein in HepG2 hepatoma cells or in neural crest cells. Thus, our method allows visualization of cell-specific sialylation processes for separate classes of membrane constituents.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
metabolic glycoengineering, sialic acid, polysialic acid, neural cell adhesion molecule, ganglioside, neuron, confocal imaging
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690KRANASTER, Petra, Jonathan BLUM, Jeremias E.G.A. DOLD, Valentin WITTMANN, Marcel LEIST, 2023. Use of metabolic glycoengineering and pharmacological inhibitors to assess lipid and protein sialylation on cells. In: Journal of Neurochemistry. Wiley. 2023, 164(4), pp. 481-498. eISSN 1471-4159. Available under: doi: 10.1111/jnc.15737
BibTex
@article{Kranaster2023metab-59501,
  year={2023},
  doi={10.1111/jnc.15737},
  title={Use of metabolic glycoengineering and pharmacological inhibitors to assess lipid and protein sialylation on cells},
  number={4},
  volume={164},
  journal={Journal of Neurochemistry},
  pages={481--498},
  author={Kranaster, Petra and Blum, Jonathan and Dold, Jeremias E.G.A. and Wittmann, Valentin and Leist, Marcel},
  note={Deutsche Forschungsgemeinschaft (KoRS-CB; SFB 969–project B05)}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59501">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Leist, Marcel</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-12-13T13:52:27Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-12-13T13:52:27Z</dcterms:available>
    <dc:creator>Leist, Marcel</dc:creator>
    <dc:creator>Dold, Jeremias E.G.A.</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59501/1/Kranaster_2-1rr5oudjnmwf14.pdf"/>
    <dc:creator>Wittmann, Valentin</dc:creator>
    <dc:contributor>Wittmann, Valentin</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Dold, Jeremias E.G.A.</dc:contributor>
    <dcterms:issued>2023</dcterms:issued>
    <dcterms:abstract xml:lang="eng">Metabolic glycoengineering (MGE) has been developed to visualize carbohydrates on live cells. The method allows the fluorescent labeling of sialic acid (Sia) sugar residues on neuronal plasma membranes. For instance, the efficiency of glycosylation along neurite membranes has been characterized as cell health measure in neurotoxicology. Using human dopaminergic neurons as model system, we asked here, whether it was possible to separately label diverse classes of biomolecules and to visualize them selectively on cells. Several approaches suggest that a large proportion of Sia rather incorporated in non-protein components of cell membranes than into glycoproteins. We made use here of deoxymannojirimycin (dMM), a non-toxic inhibitor of protein glycosylation, and of N-butyl-deoxynojirimycin (NBdNM) a well-tolerated inhibitor of lipid glycosylation, to develop a method of differential labeling of sialylated membrane lipids (lipid-Sia) or sialylated N-glycosylated proteins (protein-Sia) on live neurons. The time resolution at which Sia modification of lipids/proteins was observable was in the range of few hours. The approach was then extended to several other cell types. Using this technique of 'target-specific MGE', we found that in dopaminergic or sensory neurons &gt; 60% of Sia is lipid bound, and thus polysialic acid-neural cell adhesion molecule (PSA-NCAM) cannot be considered the major sialylated membrane component. Different from neurons, most Sia was bound to protein in HepG2 hepatoma cells or in neural crest cells. Thus, our method allows visualization of cell-specific sialylation processes for separate classes of membrane constituents.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59501"/>
    <dc:creator>Blum, Jonathan</dc:creator>
    <dc:contributor>Kranaster, Petra</dc:contributor>
    <dc:creator>Kranaster, Petra</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:title>Use of metabolic glycoengineering and pharmacological inhibitors to assess lipid and protein sialylation on cells</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59501/1/Kranaster_2-1rr5oudjnmwf14.pdf"/>
    <dc:contributor>Blum, Jonathan</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Deutsche Forschungsgemeinschaft (KoRS-CB; SFB 969–project B05)
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen