Publikation:

Suspension of Judgment in Artificial Intelligence - Uncovering Uncertainty in Data-Based and Logic-Based Systems

Lade...
Vorschaubild

Dateien

Schuster_2-1r3gwq4l5jlwr2.pdf
Schuster_2-1r3gwq4l5jlwr2.pdfGröße: 2.07 MBDownloads: 108

Datum

2024

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Dissertation
Publikationsstatus
Published

Erschienen in

Zusammenfassung

This thesis demonstrates how suspension of judgment can be integrated into systems of artificial intelligence (AI). Suspension of judgment is a crucial epistemological phenomenon that allows humans to remain neutral and to refrain from forming definitive opinions in unclear situations. A successful implementation of suspended judgment into AI systems presents a promising approach to mitigating erroneous outputs, particularly in high-stakes domains. Consequently, this research aims to analyze various AI systems to identify and enhance their ability to react neutrally when confronted with uncertain or conflicting information. By exploring the nature of suspension and its epistemological norms, this thesis provides a philosophical analysis of fruitful implementations of neutrality in AI systems. It introduces various case studies of different AI frameworks, covering both logic-based and data-based systems, and critically assesses their current and potential capabilities to suspend judgment. The analysis reveals that while some architectures inherently possess mechanisms to communicate neutrality, others lack an appropriate capacity to respond constructively in the face of uncertain or conflicting information. As a solution, fundamental modifications are proposed for incorporating the option to suspend into existing AI architectures. The thesis contributes significantly to the fields of epistemology, philosophy of mind, and artificial intelligence, providing a deeper understanding of the epistemic possibilities of AI systems. The findings have practical implications for the development of more robust and reliable AI systems, potentially capable of acknowledging and expressing uncertainties. Such advancements are essential for enhancing transparency, trustworthiness, and effective human-AI interaction.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
100 Philosophie

Schlagwörter

Artificial Intelligence, Suspension of Judgment, Doxastic Neutrality, Philosophy of AI, Abstaining Machine Learning, Doxastic Logic, Default Logic, Argumentation Theory, Epistemology, AI Alignment, Transparent AI, Machine Learning, Indecision

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SCHUSTER, Daniela, 2024. Suspension of Judgment in Artificial Intelligence - Uncovering Uncertainty in Data-Based and Logic-Based Systems [Dissertation]. Konstanz: Universität Konstanz
BibTex
@phdthesis{Schuster2024Suspe-70650,
  year={2024},
  title={Suspension of Judgment in Artificial Intelligence - Uncovering Uncertainty in Data-Based and Logic-Based Systems},
  author={Schuster, Daniela},
  address={Konstanz},
  school={Universität Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70650">
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-08-28T08:45:58Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70650"/>
    <dcterms:abstract>This thesis demonstrates how suspension of judgment can be integrated into systems of artificial intelligence (AI). Suspension of judgment is a crucial epistemological phenomenon that allows humans to remain neutral and to refrain from forming definitive opinions in unclear situations. A successful implementation of suspended judgment into AI systems presents a promising approach to mitigating erroneous outputs, particularly in high-stakes domains. Consequently, this research aims to analyze various AI systems to identify and enhance their ability to react neutrally when confronted with uncertain or conflicting information.
By exploring the nature of suspension and its epistemological norms, this thesis provides a philosophical analysis of fruitful implementations of neutrality in AI systems. It introduces various case studies of different AI frameworks, covering both logic-based and data-based systems, and critically assesses their current and potential capabilities to suspend judgment.
The analysis reveals that while some architectures inherently possess mechanisms to communicate neutrality, others lack an appropriate capacity to respond constructively in the face of uncertain or conflicting information. As a solution, fundamental modifications are proposed for incorporating the option to suspend into existing AI architectures.
The thesis contributes significantly to the fields of epistemology, philosophy of mind, and artificial intelligence, providing a deeper understanding of the epistemic possibilities of AI systems. The findings have practical implications for the development of more robust and reliable AI systems, potentially capable of acknowledging and expressing uncertainties. Such advancements are essential for enhancing transparency, trustworthiness, and effective human-AI interaction.</dcterms:abstract>
    <dcterms:title>Suspension of Judgment in Artificial Intelligence - Uncovering Uncertainty in Data-Based and Logic-Based Systems</dcterms:title>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70650/4/Schuster_2-1r3gwq4l5jlwr2.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Schuster, Daniela</dc:contributor>
    <dcterms:issued>2024</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-08-28T08:45:58Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70650/4/Schuster_2-1r3gwq4l5jlwr2.pdf"/>
    <dc:creator>Schuster, Daniela</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

July 11, 2024
Hochschulschriftenvermerk
Konstanz, Univ., Diss., 2024
Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen