Publikation: Totally positive extensions and weakly isotropic forms
Lade...
Dateien
Datum
2006
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Manuscripta Mathematica. 2006, 120(1), pp. 83-90. Available under: doi: 10.1007/s00229-006-0628-z
Zusammenfassung
The aim of this article is to analyse a new field invariant, relevant to (formally) real fields, defined as the supremum of the dimensions of all anisotropic, weakly isotropic quadratic forms over the field. This invariant is compared with the classical u-invariant and with the Hasse number. Furthermore, in order to be able to obtain examples of fields where these invariants take certain prescribed values, totally positive field extensions are studied.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
BECHER, Karim Johannes, 2006. Totally positive extensions and weakly isotropic forms. In: Manuscripta Mathematica. 2006, 120(1), pp. 83-90. Available under: doi: 10.1007/s00229-006-0628-zBibTex
@article{Becher2006Total-601,
year={2006},
doi={10.1007/s00229-006-0628-z},
title={Totally positive extensions and weakly isotropic forms},
number={1},
volume={120},
journal={Manuscripta Mathematica},
pages={83--90},
author={Becher, Karim Johannes}
}RDF
<rdf:RDF
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:bibo="http://purl.org/ontology/bibo/"
xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:void="http://rdfs.org/ns/void#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >
<rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/601">
<dcterms:bibliographicCitation>First publ. in: Manuscripta Mathematica 120 (2006), 1, pp. 83-90</dcterms:bibliographicCitation>
<dcterms:abstract xml:lang="eng">The aim of this article is to analyse a new field invariant, relevant to (formally) real fields, defined as the supremum of the dimensions of all anisotropic, weakly isotropic quadratic forms over the field. This invariant is compared with the classical u-invariant and with the Hasse number. Furthermore, in order to be able to obtain examples of fields where these invariants take certain prescribed values, totally positive field extensions are studied.</dcterms:abstract>
<dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
<dc:format>application/pdf</dc:format>
<dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
<dc:contributor>Becher, Karim Johannes</dc:contributor>
<dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
<dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
<dcterms:title>Totally positive extensions and weakly isotropic forms</dcterms:title>
<void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
<foaf:homepage rdf:resource="http://localhost:8080/"/>
<dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:11Z</dc:date>
<dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/601/1/12482.pdf"/>
<dc:creator>Becher, Karim Johannes</dc:creator>
<dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:11Z</dcterms:available>
<dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
<dcterms:issued>2006</dcterms:issued>
<dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/601/1/12482.pdf"/>
<bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/601"/>
<dc:rights>terms-of-use</dc:rights>
<dc:language>eng</dc:language>
</rdf:Description>
</rdf:RDF>Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
