Publikation:

Totally positive extensions and weakly isotropic forms

Lade...
Vorschaubild

Dateien

12482.pdf
12482.pdfGröße: 396.28 KBDownloads: 294

Datum

2006

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Manuscripta Mathematica. 2006, 120(1), pp. 83-90. Available under: doi: 10.1007/s00229-006-0628-z

Zusammenfassung

The aim of this article is to analyse a new field invariant, relevant to (formally) real fields, defined as the supremum of the dimensions of all anisotropic, weakly isotropic quadratic forms over the field. This invariant is compared with the classical u-invariant and with the Hasse number. Furthermore, in order to be able to obtain examples of fields where these invariants take certain prescribed values, totally positive field extensions are studied.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BECHER, Karim Johannes, 2006. Totally positive extensions and weakly isotropic forms. In: Manuscripta Mathematica. 2006, 120(1), pp. 83-90. Available under: doi: 10.1007/s00229-006-0628-z
BibTex
@article{Becher2006Total-601,
  year={2006},
  doi={10.1007/s00229-006-0628-z},
  title={Totally positive extensions and weakly isotropic forms},
  number={1},
  volume={120},
  journal={Manuscripta Mathematica},
  pages={83--90},
  author={Becher, Karim Johannes}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/601">
    <dcterms:bibliographicCitation>First publ. in: Manuscripta Mathematica 120 (2006), 1, pp. 83-90</dcterms:bibliographicCitation>
    <dcterms:abstract xml:lang="eng">The aim of this article is to analyse a new field invariant, relevant to (formally) real fields, defined as the supremum of the dimensions of all anisotropic, weakly isotropic quadratic forms over the field. This invariant is compared with the classical u-invariant and with the Hasse number. Furthermore, in order to be able to obtain examples of fields where these invariants take certain prescribed values, totally positive field extensions are studied.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:format>application/pdf</dc:format>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:contributor>Becher, Karim Johannes</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>Totally positive extensions and weakly isotropic forms</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:11Z</dc:date>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/601/1/12482.pdf"/>
    <dc:creator>Becher, Karim Johannes</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:11Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dcterms:issued>2006</dcterms:issued>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/601/1/12482.pdf"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/601"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen