Publikation: Shannon entropy as a robust estimator of Zipf's Law in animal vocal communication repertoires
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2021
Autor:innen
Kershenbaum, Arik
Gammon, David E.
Geffen, Eli
Gustison, Morgan L.
Ilany, Amiyaal
Lameira, Adriano R.
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Methods in Ecology and Evolution. British Ecological Society. 2021, 12(3), pp. 553-564. ISSN 2041-2096. eISSN 2041-210X. Available under: doi: 10.1111/2041-210X.13536
Zusammenfassung
- Information complexity in animals is an indicator of advanced communication and an intricate socio‐ecology. Zipf's Law of least effort has been used to assess the potential information content of animal repertoires, including whether or not a particular animal communication could be ‘language‐like’. As all human languages follow Zipf's law, with a power law coefficient (PLC) close to −1, animal signals with similar probability distributions are postulated to possess similar information characteristics to language. However, estimation of the PLC from limited empirical datasets (e.g. most animal communication studies) is problematic because of biases from small sample sizes.
2. The traditional approach to estimating Zipf's law PLC is to find the slope of a log–log rank‐frequency plot. Our alternative option uses the underlying equivalence between Shannon entropy (i.e. whether successive elements of a sequence are unpredictable, or repetitive) and PLC. Here, we test whether an entropy approach yields more robust estimates of Zipf's law PLC than the traditional approach.
3. We examined the efficacy of the entropy approach in two ways. First, we estimated the PLC from synthetic datasets generated with a priori known power law probability distributions. This revealed that the estimated PLC using the traditional method is particularly inaccurate for highly stereotyped sequences, even at modest repertoire sizes. Estimation via Shannon entropy is accurate with modest sample sizes even for repertoires with thousands of distinct elements. Second, we applied these approaches to empirical data taken from 11 animal species. Shannon entropy produced a more robust estimate of PLC with lower variance than the traditional method, even when the true PLC is unknown. Our approach for the first time reveals Zipf's law operating in the vocal systems of multiple lineages: songbirds, hyraxes and cetaceans.
4. As different methods of estimating the PLC can lead to misleading results in real data, estimating the balance of a communication system between simplicity and complexity is best performed using the entropy approach. This provides a more robust way to investigate the evolutionary constraints and processes that have acted on animal communication systems, and the parallels between these processes and the evolution of language.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
animal communication, information theory, language, Shannon entropy, Zipf's Law
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
KERSHENBAUM, Arik, Vlad DEMARTSEV, David E. GAMMON, Eli GEFFEN, Morgan L. GUSTISON, Amiyaal ILANY, Adriano R. LAMEIRA, 2021. Shannon entropy as a robust estimator of Zipf's Law in animal vocal communication repertoires. In: Methods in Ecology and Evolution. British Ecological Society. 2021, 12(3), pp. 553-564. ISSN 2041-2096. eISSN 2041-210X. Available under: doi: 10.1111/2041-210X.13536BibTex
@article{Kershenbaum2021Shann-52906, year={2021}, doi={10.1111/2041-210X.13536}, title={Shannon entropy as a robust estimator of Zipf's Law in animal vocal communication repertoires}, number={3}, volume={12}, issn={2041-2096}, journal={Methods in Ecology and Evolution}, pages={553--564}, author={Kershenbaum, Arik and Demartsev, Vlad and Gammon, David E. and Geffen, Eli and Gustison, Morgan L. and Ilany, Amiyaal and Lameira, Adriano R.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52906"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Geffen, Eli</dc:contributor> <dc:creator>Ilany, Amiyaal</dc:creator> <dc:contributor>Lameira, Adriano R.</dc:contributor> <dc:contributor>Demartsev, Vlad</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:creator>Geffen, Eli</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-18T13:29:46Z</dc:date> <dc:contributor>Gustison, Morgan L.</dc:contributor> <dcterms:abstract xml:lang="eng">1. Information complexity in animals is an indicator of advanced communication and an intricate socio‐ecology. Zipf's Law of least effort has been used to assess the potential information content of animal repertoires, including whether or not a particular animal communication could be ‘language‐like’. As all human languages follow Zipf's law, with a power law coefficient (PLC) close to −1, animal signals with similar probability distributions are postulated to possess similar information characteristics to language. However, estimation of the PLC from limited empirical datasets (e.g. most animal communication studies) is problematic because of biases from small sample sizes.<br />2. The traditional approach to estimating Zipf's law PLC is to find the slope of a log–log rank‐frequency plot. Our alternative option uses the underlying equivalence between Shannon entropy (i.e. whether successive elements of a sequence are unpredictable, or repetitive) and PLC. Here, we test whether an entropy approach yields more robust estimates of Zipf's law PLC than the traditional approach.<br />3. We examined the efficacy of the entropy approach in two ways. First, we estimated the PLC from synthetic datasets generated with a priori known power law probability distributions. This revealed that the estimated PLC using the traditional method is particularly inaccurate for highly stereotyped sequences, even at modest repertoire sizes. Estimation via Shannon entropy is accurate with modest sample sizes even for repertoires with thousands of distinct elements. Second, we applied these approaches to empirical data taken from 11 animal species. Shannon entropy produced a more robust estimate of PLC with lower variance than the traditional method, even when the true PLC is unknown. Our approach for the first time reveals Zipf's law operating in the vocal systems of multiple lineages: songbirds, hyraxes and cetaceans.<br />4. As different methods of estimating the PLC can lead to misleading results in real data, estimating the balance of a communication system between simplicity and complexity is best performed using the entropy approach. This provides a more robust way to investigate the evolutionary constraints and processes that have acted on animal communication systems, and the parallels between these processes and the evolution of language.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-18T13:29:46Z</dcterms:available> <dcterms:issued>2021</dcterms:issued> <dc:rights>terms-of-use</dc:rights> <dcterms:title>Shannon entropy as a robust estimator of Zipf's Law in animal vocal communication repertoires</dcterms:title> <dc:contributor>Kershenbaum, Arik</dc:contributor> <dc:contributor>Ilany, Amiyaal</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:creator>Demartsev, Vlad</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Kershenbaum, Arik</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52906"/> <dc:language>eng</dc:language> <dc:creator>Gammon, David E.</dc:creator> <dc:creator>Lameira, Adriano R.</dc:creator> <dc:contributor>Gammon, David E.</dc:contributor> <dc:creator>Gustison, Morgan L.</dc:creator> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja