Publikation:

Quasiclassical theory of non-adiabatic tunneling in nanocontacts induced by phase-controlled ultrashort light pulses

Lade...
Vorschaubild

Dateien

Kim_2-1n9ab5b5i6sqq4.pdf
Kim_2-1n9ab5b5i6sqq4.pdfGröße: 3.64 MBDownloads: 113

Datum

2021

Autor:innen

Kim, Sangwon
Schmude, Tobias

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

New Journal of Physics. Institute of Physics Publishing (IOP). 2021, 23, 083006. eISSN 1367-2630. Available under: doi: 10.1088/1367-2630/ac1552

Zusammenfassung

We theoretically investigate tunneling through free-space or dielectric nanogaps between metallic nanocontacts driven by ultrashort ultrabroadband light pulses. For this purpose we develop a time-dependent quasiclassical theory being especially suitable to describe the tunneling process in the non-adiabatic regime, when this process can be significantly influenced by the photon absorption as the electron moves in the classically forbidden region. Firstly, the case of driving by an ideal half-cycle pulse is studied. For different distances between the contacts, we analyze the main solutions having the form of a quasiclassical wave packet of the tunneling electron and an evanescent wave of the electron density. For each of these solutions the resulting tunneling probability is determined with the exponential accuracy inherent to the method. We identify a crossover between two tunneling regimes corresponding to both solutions in dependence on the field strength and intercontact distance that can be observed in the corresponding behaviour of the tunneling probability. Secondly, considering realistic temporal profiles of few-femtosecond pulses, we demonstrate that the preferred direction of the electron transport through the nanogap can be controlled by changing the carrier-envelope phase of the pulse, in agreement with recent experimental findings and numerical simulations. We find analytical expressions for the tunneling probability, determining the resulting charge transfer in dependence on the pulse parameters. Further, we determine temporal shifts of the outgoing electron trajectories with respect to the peaks of the laser field in dependence on the pulse phase and illustrate when the non-adiabatical character of the tunneling process is particularly important.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

non-adiabatic tunneling, quasiclassical approximation, ultrashort light pulses, nanocontacts

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KIM, Sangwon, Tobias SCHMUDE, Guido BURKARD, Andrey S. MOSKALENKO, 2021. Quasiclassical theory of non-adiabatic tunneling in nanocontacts induced by phase-controlled ultrashort light pulses. In: New Journal of Physics. Institute of Physics Publishing (IOP). 2021, 23, 083006. eISSN 1367-2630. Available under: doi: 10.1088/1367-2630/ac1552
BibTex
@article{Kim2021Quasi-53586.2,
  year={2021},
  doi={10.1088/1367-2630/ac1552},
  title={Quasiclassical theory of non-adiabatic tunneling in nanocontacts induced by phase-controlled ultrashort light pulses},
  volume={23},
  journal={New Journal of Physics},
  author={Kim, Sangwon and Schmude, Tobias and Burkard, Guido and Moskalenko, Andrey S.},
  note={Article Number: 083006}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53586.2">
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53586.2/1/Kim_2-1n9ab5b5i6sqq4.pdf"/>
    <dc:contributor>Schmude, Tobias</dc:contributor>
    <dc:creator>Moskalenko, Andrey S.</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:abstract xml:lang="eng">We theoretically investigate tunneling through free-space or dielectric nanogaps between metallic nanocontacts driven by ultrashort ultrabroadband light pulses. For this purpose we develop a time-dependent quasiclassical theory being especially suitable to describe the tunneling process in the non-adiabatic regime, when this process can be significantly influenced by the photon absorption as the electron moves in the classically forbidden region. Firstly, the case of driving by an ideal half-cycle pulse is studied. For different distances between the contacts, we analyze the main solutions having the form of a quasiclassical wave packet of the tunneling electron and an evanescent wave of the electron density. For each of these solutions the resulting tunneling probability is determined with the exponential accuracy inherent to the method. We identify a crossover between two tunneling regimes corresponding to both solutions in dependence on the field strength and intercontact distance that can be observed in the corresponding behaviour of the tunneling probability. Secondly, considering realistic temporal profiles of few-femtosecond pulses, we demonstrate that the preferred direction of the electron transport through the nanogap can be controlled by changing the carrier-envelope phase of the pulse, in agreement with recent experimental findings and numerical simulations. We find analytical expressions for the tunneling probability, determining the resulting charge transfer in dependence on the pulse parameters. Further, we determine temporal shifts of the outgoing electron trajectories with respect to the peaks of the laser field in dependence on the pulse phase and illustrate when the non-adiabatical character of the tunneling process is particularly important.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-08-18T12:02:53Z</dcterms:available>
    <dc:contributor>Moskalenko, Andrey S.</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-08-18T12:02:53Z</dc:date>
    <dc:creator>Kim, Sangwon</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Quasiclassical theory of non-adiabatic tunneling in nanocontacts induced by phase-controlled ultrashort light pulses</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53586.2"/>
    <dc:creator>Burkard, Guido</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53586.2/1/Kim_2-1n9ab5b5i6sqq4.pdf"/>
    <dcterms:issued>2021</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Schmude, Tobias</dc:creator>
    <dc:contributor>Kim, Sangwon</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Burkard, Guido</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen

Versionsgeschichte

Gerade angezeigt 1 - 2 von 2
VersionDatumZusammenfassung
2*
2021-08-18 11:22:35
2021-05-04 13:24:16
* Ausgewählte Version