Publikation: Data-Driven Model-Order Reduction for Model Predictive Control
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this thesis, quadratic optimal control problems for linear parabolic partial differen- tial equations (PDEs) with time-dependent coefficient functions are considered. After showing the existence and uniqueness of the solution, necessary and sufficient first order optimality conditions are derived. By applying a finite element (FE) discretization, the first-order optimality system can be represented as a linear time-variant (LTV) coupled dynamical system, which encompasses both the state equation and the dual equation. This leads us into the area of dynamical systems. Model predictive control (MPC) is applied to solve the problem over the long-time horizon. To speedup the computational time three data-driven model-order reduction (MOR) techniques are applied: Proper or- thogonal decomposition (POD), empirical gramians and extended dynamic mode decom- position (EDMD). Furthermore, an a-posteriori error analysis is conducted to guarantee the accuracy of the reduced model during the MPC. Numerical simulations illustrate the advantages and disadvantages of the various MOR techniques.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ROHLEFF, Jan, 2023. Data-Driven Model-Order Reduction for Model Predictive Control [Master thesis]. Konstanz: Universität KonstanzBibTex
@mastersthesis{Rohleff2023DataD-66556, year={2023}, title={Data-Driven Model-Order Reduction for Model Predictive Control}, address={Konstanz}, school={Universität Konstanz}, author={Rohleff, Jan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/66556"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract>In this thesis, quadratic optimal control problems for linear parabolic partial differen- tial equations (PDEs) with time-dependent coefficient functions are considered. After showing the existence and uniqueness of the solution, necessary and sufficient first order optimality conditions are derived. By applying a finite element (FE) discretization, the first-order optimality system can be represented as a linear time-variant (LTV) coupled dynamical system, which encompasses both the state equation and the dual equation. This leads us into the area of dynamical systems. Model predictive control (MPC) is applied to solve the problem over the long-time horizon. To speedup the computational time three data-driven model-order reduction (MOR) techniques are applied: Proper or- thogonal decomposition (POD), empirical gramians and extended dynamic mode decom- position (EDMD). Furthermore, an a-posteriori error analysis is conducted to guarantee the accuracy of the reduced model during the MPC. Numerical simulations illustrate the advantages and disadvantages of the various MOR techniques.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>Data-Driven Model-Order Reduction for Model Predictive Control</dcterms:title> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66556/4/Rohleff_2-1mu5q5d2uids85.pdf"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66556/4/Rohleff_2-1mu5q5d2uids85.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <dcterms:issued>2023</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/66556"/> <dc:contributor>Rohleff, Jan</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-04-12T12:34:24Z</dcterms:available> <dc:rights>terms-of-use</dc:rights> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Rohleff, Jan</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-04-12T12:34:24Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>