Publikation:

Data-Driven Model-Order Reduction for Model Predictive Control

Lade...
Vorschaubild

Dateien

Rohleff_2-1mu5q5d2uids85.pdf
Rohleff_2-1mu5q5d2uids85.pdfGröße: 4.25 MBDownloads: 188

Datum

2023

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Masterarbeit/Diplomarbeit
Publikationsstatus
Published

Erschienen in

Zusammenfassung

In this thesis, quadratic optimal control problems for linear parabolic partial differen- tial equations (PDEs) with time-dependent coefficient functions are considered. After showing the existence and uniqueness of the solution, necessary and sufficient first order optimality conditions are derived. By applying a finite element (FE) discretization, the first-order optimality system can be represented as a linear time-variant (LTV) coupled dynamical system, which encompasses both the state equation and the dual equation. This leads us into the area of dynamical systems. Model predictive control (MPC) is applied to solve the problem over the long-time horizon. To speedup the computational time three data-driven model-order reduction (MOR) techniques are applied: Proper or- thogonal decomposition (POD), empirical gramians and extended dynamic mode decom- position (EDMD). Furthermore, an a-posteriori error analysis is conducted to guarantee the accuracy of the reduced model during the MPC. Numerical simulations illustrate the advantages and disadvantages of the various MOR techniques.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Dynamical Systems, Optimal Control, Model-Order Reduction, Model Predictive Control, Empirical Gramians, Proper Orthogonal Decomposition, Extended Dynamic Mode Decomposition, POD, EDMD, Time-Variant Systems, Semismooth Newton

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ROHLEFF, Jan, 2023. Data-Driven Model-Order Reduction for Model Predictive Control [Master thesis]. Konstanz: Universität Konstanz
BibTex
@mastersthesis{Rohleff2023DataD-66556,
  year={2023},
  title={Data-Driven Model-Order Reduction for Model Predictive Control},
  address={Konstanz},
  school={Universität Konstanz},
  author={Rohleff, Jan}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/66556">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract>In this thesis, quadratic optimal control problems for linear parabolic partial differen- tial equations (PDEs) with time-dependent coefficient functions are considered. After showing the existence and uniqueness of the solution, necessary and sufficient first order optimality conditions are derived. By applying a finite element (FE) discretization, the first-order optimality system can be represented as a linear time-variant (LTV) coupled dynamical system, which encompasses both the state equation and the dual equation. This leads us into the area of dynamical systems. Model predictive control (MPC) is applied to solve the problem over the long-time horizon. To speedup the computational time three data-driven model-order reduction (MOR) techniques are applied: Proper or- thogonal decomposition (POD), empirical gramians and extended dynamic mode decom- position (EDMD). Furthermore, an a-posteriori error analysis is conducted to guarantee the accuracy of the reduced model during the MPC. Numerical simulations illustrate the advantages and disadvantages of the various MOR techniques.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Data-Driven Model-Order Reduction for Model Predictive Control</dcterms:title>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66556/4/Rohleff_2-1mu5q5d2uids85.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66556/4/Rohleff_2-1mu5q5d2uids85.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:language>eng</dc:language>
    <dcterms:issued>2023</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/66556"/>
    <dc:contributor>Rohleff, Jan</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-04-12T12:34:24Z</dcterms:available>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Rohleff, Jan</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-04-12T12:34:24Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Hochschulschriftenvermerk
Konstanz, Universität Konstanz, Masterarbeit/Diplomarbeit, 2023
Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen