Publikation: Fuzzy Clustering in Parallel Universes
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We propose a modified fuzzy c-means algorithm that operates on different feature spaces, so-called parallel universes, simultaneously. The method assigns membership values of patterns to different universes, which are then adopted throughout the training. This leads to better clustering results since patterns not contributing to clustering in a universe are (completely or partially) ignored. The outcome of the algorithm are clusters distributed over different parallel universes, each modeling a particular, potentially overlapping, subset of the data. One potential target application of the proposed method is biological data analysis where different descriptors for molecules are available but none of them by itself shows global satisfactory prediction results. In this paper we show how the fuzzy c-means algorithm can be extended to operate in parallel universes and illustrate the usefulness of this method using results on artificial data sets.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WISWEDEL, Bernd, Michael R. BERTHOLD, 2005. Fuzzy Clustering in Parallel Universes. NAFIPS 2005 - 2005 Annual Meeting of the North American Fuzzy Information Processing Society. Detroit, MI, USA. In: NAFIPS 2005 - 2005 Annual Meeting of the North American Fuzzy Information Processing Society. IEEE, 2005, pp. 567-572. ISBN 0-7803-9187-X. Available under: doi: 10.1109/NAFIPS.2005.1548598BibTex
@inproceedings{Wiswedel2005Fuzzy-24401, year={2005}, doi={10.1109/NAFIPS.2005.1548598}, title={Fuzzy Clustering in Parallel Universes}, isbn={0-7803-9187-X}, publisher={IEEE}, booktitle={NAFIPS 2005 - 2005 Annual Meeting of the North American Fuzzy Information Processing Society}, pages={567--572}, author={Wiswedel, Bernd and Berthold, Michael R.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24401"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-09-12T13:35:00Z</dcterms:available> <dc:contributor>Berthold, Michael R.</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-09-12T13:35:00Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>2005</dcterms:issued> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24401/1/Wiswedel_244012.pdf"/> <dcterms:title>Fuzzy Clustering in Parallel Universes</dcterms:title> <dc:contributor>Wiswedel, Bernd</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:abstract xml:lang="eng">We propose a modified fuzzy c-means algorithm that operates on different feature spaces, so-called parallel universes, simultaneously. The method assigns membership values of patterns to different universes, which are then adopted throughout the training. This leads to better clustering results since patterns not contributing to clustering in a universe are (completely or partially) ignored. The outcome of the algorithm are clusters distributed over different parallel universes, each modeling a particular, potentially overlapping, subset of the data. One potential target application of the proposed method is biological data analysis where different descriptors for molecules are available but none of them by itself shows global satisfactory prediction results. In this paper we show how the fuzzy c-means algorithm can be extended to operate in parallel universes and illustrate the usefulness of this method using results on artificial data sets.</dcterms:abstract> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24401/1/Wiswedel_244012.pdf"/> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24401"/> <dc:creator>Berthold, Michael R.</dc:creator> <dc:creator>Wiswedel, Bernd</dc:creator> <dcterms:bibliographicCitation>NAFIPS 2005 : 2005 Annual Meeting of the North American Fuzzy Information Processing Society ; Detroit, MI, 26 - 28 June 2005 / IEEE. - Piscataway, N.J. : IEEE Service Center, 2005. - S. 567-572. - ISBN 0-7803-9187-X</dcterms:bibliographicCitation> </rdf:Description> </rdf:RDF>