Visual Analytics for Temporal Hypergraph Model Exploration
Visual Analytics for Temporal Hypergraph Model Exploration
Loading...
Date
2021
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
700381
Project
ASGARD - Analysis System For Gathered Raw Data
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published
Published in
IEEE Transactions on Visualization and Computer Graphics ; 27 (2021), 2. - pp. 550-560. - IEEE. - ISSN 1077-2626. - eISSN 1941-0506
Abstract
Many processes, from gene interaction in biology to computer networks to social media, can be modeled more precisely as temporal hypergraphs than by regular graphs. This is because hypergraphs generalize graphs by extending edges to connect any number of vertices, allowing complex relationships to be described more accurately and predict their behavior over time. However, the interactive exploration and seamless refinement of such hypergraph-based prediction models still pose a major challenge. We contribute Hyper-Matrix, a novel visual analytics technique that addresses this challenge through a tight coupling between machine-learning and interactive visualizations. In particular, the technique incorporates a geometric deep learning model as a blueprint for problem-specific models while integrating visualizations for graph-based and category-based data with a novel combination of interactions for an effective user-driven exploration of hypergraph models. To eliminate demanding context switches and ensure scalability, our matrix-based visualization provides drill-down capabilities across multiple levels of semantic zoom, from an overview of model predictions down to the content. We facilitate a focused analysis of relevant connections and groups based on interactive user-steering for filtering and search tasks, a dynamically modifiable partition hierarchy, various matrix reordering techniques, and interactive model feedback. We evaluate our technique in a case study and through formative evaluation with law enforcement experts using real-world internet forum communication data. The results show that our approach surpasses existing solutions in terms of scalability and applicability, enables the incorporation of domain knowledge, and allows for fast search-space traversal. With the proposed technique, we pave the way for the visual analytics of temporal hypergraphs in a wide variety of domains.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Hypergraph, communication analysis, geometric deep learning, semantic zoom, matrix ordering, visual analytics
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
FISCHER, Maximilian T., Devanshu ARYA, Dirk STREEB, Daniel SEEBACHER, Daniel A. KEIM, Marcel WORRING, 2021. Visual Analytics for Temporal Hypergraph Model Exploration. In: IEEE Transactions on Visualization and Computer Graphics. IEEE. 27(2), pp. 550-560. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2020.3030408BibTex
@article{Fischer2021-02Visua-53080, year={2021}, doi={10.1109/TVCG.2020.3030408}, title={Visual Analytics for Temporal Hypergraph Model Exploration}, number={2}, volume={27}, issn={1077-2626}, journal={IEEE Transactions on Visualization and Computer Graphics}, pages={550--560}, author={Fischer, Maximilian T. and Arya, Devanshu and Streeb, Dirk and Seebacher, Daniel and Keim, Daniel A. and Worring, Marcel} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53080"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Fischer, Maximilian T.</dc:contributor> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-05T09:39:24Z</dcterms:available> <dc:contributor>Seebacher, Daniel</dc:contributor> <dc:creator>Streeb, Dirk</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:creator>Keim, Daniel A.</dc:creator> <dc:creator>Fischer, Maximilian T.</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53080/1/Fischer_2-1mfa2sxnu9atk9.pdf"/> <dc:contributor>Arya, Devanshu</dc:contributor> <dcterms:abstract xml:lang="eng">Many processes, from gene interaction in biology to computer networks to social media, can be modeled more precisely as temporal hypergraphs than by regular graphs. This is because hypergraphs generalize graphs by extending edges to connect any number of vertices, allowing complex relationships to be described more accurately and predict their behavior over time. However, the interactive exploration and seamless refinement of such hypergraph-based prediction models still pose a major challenge. We contribute Hyper-Matrix, a novel visual analytics technique that addresses this challenge through a tight coupling between machine-learning and interactive visualizations. In particular, the technique incorporates a geometric deep learning model as a blueprint for problem-specific models while integrating visualizations for graph-based and category-based data with a novel combination of interactions for an effective user-driven exploration of hypergraph models. To eliminate demanding context switches and ensure scalability, our matrix-based visualization provides drill-down capabilities across multiple levels of semantic zoom, from an overview of model predictions down to the content. We facilitate a focused analysis of relevant connections and groups based on interactive user-steering for filtering and search tasks, a dynamically modifiable partition hierarchy, various matrix reordering techniques, and interactive model feedback. We evaluate our technique in a case study and through formative evaluation with law enforcement experts using real-world internet forum communication data. The results show that our approach surpasses existing solutions in terms of scalability and applicability, enables the incorporation of domain knowledge, and allows for fast search-space traversal. With the proposed technique, we pave the way for the visual analytics of temporal hypergraphs in a wide variety of domains.</dcterms:abstract> <dcterms:issued>2021-02</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-05T09:39:24Z</dc:date> <dc:contributor>Worring, Marcel</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Streeb, Dirk</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Arya, Devanshu</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>Visual Analytics for Temporal Hypergraph Model Exploration</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53080/1/Fischer_2-1mfa2sxnu9atk9.pdf"/> <dc:language>eng</dc:language> <dc:creator>Seebacher, Daniel</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53080"/> <dc:creator>Worring, Marcel</dc:creator> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Yes