Publikation:

The interval constrained 3-coloring problem

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2015

Autor:innen

Byrka, Jaroslaw
Sanità, Laura

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Theoretical Computer Science. 2015, 593, pp. 42-50. ISSN 0304-3975. eISSN 1879-2294. Available under: doi: 10.1016/j.tcs.2015.04.037

Zusammenfassung

In this paper, we settle the open complexity status of interval constrained coloring with a fixed number of colors. We prove that the problem is already NP-complete if the number of different colors is 3. Previously, it has only been known that it is NP-complete, if the number of colors is part of the input and that the problem is solvable in polynomial time, if the number of colors is at most 2. We also show that it is hard to satisfy almost all of the constraints for a feasible instance (even in the restricted case where each interval is used at most once). This implies APX-hardness of maximizing the number of simultaneously satisfiable intervals.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BYRKA, Jaroslaw, Andreas KARRENBAUER, Laura SANITÀ, 2015. The interval constrained 3-coloring problem. In: Theoretical Computer Science. 2015, 593, pp. 42-50. ISSN 0304-3975. eISSN 1879-2294. Available under: doi: 10.1016/j.tcs.2015.04.037
BibTex
@article{Byrka2015-08inter-32969,
  year={2015},
  doi={10.1016/j.tcs.2015.04.037},
  title={The interval constrained 3-coloring problem},
  volume={593},
  issn={0304-3975},
  journal={Theoretical Computer Science},
  pages={42--50},
  author={Byrka, Jaroslaw and Karrenbauer, Andreas and Sanità, Laura}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/32969">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-02-15T13:05:03Z</dc:date>
    <dc:contributor>Byrka, Jaroslaw</dc:contributor>
    <dcterms:abstract xml:lang="eng">In this paper, we settle the open complexity status of interval constrained coloring with a fixed number of colors. We prove that the problem is already NP-complete if the number of different colors is 3. Previously, it has only been known that it is NP-complete, if the number of colors is part of the input and that the problem is solvable in polynomial time, if the number of colors is at most 2. We also show that it is hard to satisfy almost all of the constraints for a feasible instance (even in the restricted case where each interval is used at most once). This implies APX-hardness of maximizing the number of simultaneously satisfiable intervals.</dcterms:abstract>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/32969"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-02-15T13:05:03Z</dcterms:available>
    <dcterms:title>The interval constrained 3-coloring problem</dcterms:title>
    <dc:contributor>Sanità, Laura</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2015-08</dcterms:issued>
    <dc:creator>Sanità, Laura</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Karrenbauer, Andreas</dc:creator>
    <dc:creator>Byrka, Jaroslaw</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Karrenbauer, Andreas</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen