Publikation:

Numerical Study of Metachronal Wave‐Modulated Locomotion in Magnetic Cilia Carpets

Lade...
Vorschaubild

Dateien

Jiang_2-1jnmlgtqm9rbq4.pdf
Jiang_2-1jnmlgtqm9rbq4.pdfGröße: 9.08 MBDownloads: 21

Datum

2023

Autor:innen

Jiang, Hao
Nelson, Bradley J.
Zhang, Teng

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Swiss National Science Foundation: 203203
Swiss National Science Foundation: 200020B_185039
European Union (EU): 743217

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Advanced Intelligent Systems. Wiley. 2023, 5(10), 2300212. eISSN 2640-4567. Verfügbar unter: doi: 10.1002/aisy.202300212

Zusammenfassung

Metachronal motions are ubiquitous in terrestrial and aquatic organisms and have attracted substantial attention in engineering for their potential applications. Hard‐magnetic soft materials are shown to provide new opportunities for metachronal wave‐modulated robotic locomotion by multi‐agent active morphing in response to external magnetic fields. However, the design and optimization of such magnetic soft robots can be complex, and the fabrication and magnetization processes are often delicate and time‐consuming. Herein, a computational model is developed that integrates granular models into a magnetic–lattice model, both of which are implemented in the highly efficient parallel computing platform large‐scale atomic/molecular massively parallel simulator (LAMMPS). The simulations accurately reproduce the deformation of single cilium, the metachronal wave motion of multiple cilia, and the crawling and rolling locomotion of magnetic cilia soft robots. Furthermore, the simulations provide insight into the spatial and temporal variation of friction forces and trajectories of cilia tips. The results contribute to the understanding of metachronal wave‐modulated locomotion and potential applications in the field of soft robotics and biomimetic engineering. The developed model also provides a versatile computational framework for simulating the movement of magnetic soft robots in realistic environments and has the potential to guide the design, optimization, and customization of these systems.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

lattice models, locomotion, magnetic cilia carpets, metachronal waves, modeling and simulations

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690JIANG, Hao, Hongri GU, Bradley J. NELSON, Teng ZHANG, 2023. Numerical Study of Metachronal Wave‐Modulated Locomotion in Magnetic Cilia Carpets. In: Advanced Intelligent Systems. Wiley. 2023, 5(10), 2300212. eISSN 2640-4567. Verfügbar unter: doi: 10.1002/aisy.202300212
BibTex
@article{Jiang2023-10Numer-71763,
  year={2023},
  doi={10.1002/aisy.202300212},
  title={Numerical Study of Metachronal Wave‐Modulated Locomotion in Magnetic Cilia Carpets},
  number={10},
  volume={5},
  journal={Advanced Intelligent Systems},
  author={Jiang, Hao and Gu, Hongri and Nelson, Bradley J. and Zhang, Teng},
  note={Article Number: 2300212}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71763">
    <dc:contributor>Nelson, Bradley J.</dc:contributor>
    <dcterms:abstract>Metachronal motions are ubiquitous in terrestrial and aquatic organisms and have attracted substantial attention in engineering for their potential applications. Hard‐magnetic soft materials are shown to provide new opportunities for metachronal wave‐modulated robotic locomotion by multi‐agent active morphing in response to external magnetic fields. However, the design and optimization of such magnetic soft robots can be complex, and the fabrication and magnetization processes are often delicate and time‐consuming. Herein, a computational model is developed that integrates granular models into a magnetic–lattice model, both of which are implemented in the highly efficient parallel computing platform large‐scale atomic/molecular massively parallel simulator (LAMMPS). The simulations accurately reproduce the deformation of single cilium, the metachronal wave motion of multiple cilia, and the crawling and rolling locomotion of magnetic cilia soft robots. Furthermore, the simulations provide insight into the spatial and temporal variation of friction forces and trajectories of cilia tips. The results contribute to the understanding of metachronal wave‐modulated locomotion and potential applications in the field of soft robotics and biomimetic engineering. The developed model also provides a versatile computational framework for simulating the movement of magnetic soft robots in realistic environments and has the potential to guide the design, optimization, and customization of these systems.</dcterms:abstract>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:creator>Nelson, Bradley J.</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71763"/>
    <dc:creator>Zhang, Teng</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Zhang, Teng</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:creator>Jiang, Hao</dc:creator>
    <dcterms:issued>2023-10</dcterms:issued>
    <dc:language>eng</dc:language>
    <dc:contributor>Gu, Hongri</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71763/4/Jiang_2-1jnmlgtqm9rbq4.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-12-20T11:30:05Z</dcterms:available>
    <dcterms:title>Numerical Study of Metachronal Wave‐Modulated Locomotion in Magnetic Cilia Carpets</dcterms:title>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71763/4/Jiang_2-1jnmlgtqm9rbq4.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:contributor>Jiang, Hao</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-12-20T11:30:05Z</dc:date>
    <dc:creator>Gu, Hongri</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen