Publikation:

Stability for thermoelastic plates with two temperatures

Lade...
Vorschaubild

Dateien

Quintanilla_0-388104.pdf
Quintanilla_0-388104.pdfGröße: 372.55 KBDownloads: 294

Datum

2017

Autor:innen

Quintanilla, Ramón

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published

Erschienen in

Zusammenfassung

We investigate the well-posedness, the exponential stability, or the lack thereof, of thermoelastic systems in materials where, in contrast to classical thermoelastic models for Kirchhoff type plates, two temperatures are involved, related by an elliptic equation. The arising initial boundary value problems for different boundary conditions deal with systems of partial differential equations involving Schrödinger like equations, hyperbolic and elliptic equations, which have a different character compared to the classical one with the usual single temperature. Depending on the model -- with Fourier or with Cattaneo type heat conduction -- we obtain exponential resp. non-exponential stability, thus providing another examples where the change from Fourier's to Cattaneo's law leads to a loss of exponential stability.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690QUINTANILLA, Ramón, Reinhard RACKE, 2017. Stability for thermoelastic plates with two temperatures
BibTex
@techreport{Quintanilla2017Stabi-36867,
  year={2017},
  series={Konstanzer Schriften in Mathematik},
  title={Stability for thermoelastic plates with two temperatures},
  number={356},
  author={Quintanilla, Ramón and Racke, Reinhard}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36867">
    <dc:contributor>Racke, Reinhard</dc:contributor>
    <dc:creator>Quintanilla, Ramón</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dcterms:issued>2017</dcterms:issued>
    <dc:creator>Racke, Reinhard</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-01-20T13:07:37Z</dc:date>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/36867/3/Quintanilla_0-388104.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/36867"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/36867/3/Quintanilla_0-388104.pdf"/>
    <dc:contributor>Quintanilla, Ramón</dc:contributor>
    <dcterms:title>Stability for thermoelastic plates with two temperatures</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:abstract xml:lang="eng">We investigate the well-posedness, the exponential stability, or the lack thereof, of thermoelastic systems in materials where, in contrast to classical thermoelastic models for Kirchhoff type plates, two temperatures are involved, related by an elliptic equation. The arising initial boundary value problems for different boundary conditions deal with systems of partial differential equations involving Schrödinger like equations, hyperbolic and elliptic equations, which have a different character compared to the classical one with the usual single temperature.  Depending on the model -- with Fourier or with Cattaneo type heat conduction -- we obtain exponential resp. non-exponential stability, thus providing another examples where the change from Fourier's to Cattaneo's law leads to a loss of exponential stability.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-01-20T13:07:37Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen