Publikation: Stability for thermoelastic plates with two temperatures
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We investigate the well-posedness, the exponential stability, or the lack thereof, of thermoelastic systems in materials where, in contrast to classical thermoelastic models for Kirchhoff type plates, two temperatures are involved, related by an elliptic equation. The arising initial boundary value problems for different boundary conditions deal with systems of partial differential equations involving Schrödinger like equations, hyperbolic and elliptic equations, which have a different character compared to the classical one with the usual single temperature. Depending on the model -- with Fourier or with Cattaneo type heat conduction -- we obtain exponential resp. non-exponential stability, thus providing another examples where the change from Fourier's to Cattaneo's law leads to a loss of exponential stability.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
QUINTANILLA, Ramón, Reinhard RACKE, 2017. Stability for thermoelastic plates with two temperaturesBibTex
@techreport{Quintanilla2017Stabi-36867, year={2017}, series={Konstanzer Schriften in Mathematik}, title={Stability for thermoelastic plates with two temperatures}, number={356}, author={Quintanilla, Ramón and Racke, Reinhard} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36867"> <dc:contributor>Racke, Reinhard</dc:contributor> <dc:creator>Quintanilla, Ramón</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dcterms:issued>2017</dcterms:issued> <dc:creator>Racke, Reinhard</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-01-20T13:07:37Z</dc:date> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/36867/3/Quintanilla_0-388104.pdf"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/36867"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/36867/3/Quintanilla_0-388104.pdf"/> <dc:contributor>Quintanilla, Ramón</dc:contributor> <dcterms:title>Stability for thermoelastic plates with two temperatures</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:rights>terms-of-use</dc:rights> <dcterms:abstract xml:lang="eng">We investigate the well-posedness, the exponential stability, or the lack thereof, of thermoelastic systems in materials where, in contrast to classical thermoelastic models for Kirchhoff type plates, two temperatures are involved, related by an elliptic equation. The arising initial boundary value problems for different boundary conditions deal with systems of partial differential equations involving Schrödinger like equations, hyperbolic and elliptic equations, which have a different character compared to the classical one with the usual single temperature. Depending on the model -- with Fourier or with Cattaneo type heat conduction -- we obtain exponential resp. non-exponential stability, thus providing another examples where the change from Fourier's to Cattaneo's law leads to a loss of exponential stability.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-01-20T13:07:37Z</dcterms:available> </rdf:Description> </rdf:RDF>