Perspectives on the 2×2 Matrix : Solving Semantically Distinct Problems Based on a Shared Structure of Binary Contingencies

Lade...
Vorschaubild
Dateien
Neth_2-1j38twtpn2rhq7.pdf
Neth_2-1j38twtpn2rhq7.pdfGröße: 3.57 MBDownloads: 241
Datum
2021
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Frontiers in Psychology. Frontiers Research Foundation. 2021, 11, 567817. eISSN 1664-1078. Available under: doi: 10.3389/fpsyg.2020.567817
Zusammenfassung

Cognition is both empowered and limited by representations. The matrix lens model explicates tasks that are based on frequency counts, conditional probabilities, and binary contingencies in a general fashion. Based on a structural analysis of such tasks, the model links several problems and semantic domains and provides a new perspective on representational accounts of cognition that recognizes representational isomorphs as opportunities, rather than as problems. The shared structural construct of a 2×2 matrix supports a set of generic tasks and semantic mappings that provide a unifying framework for understanding problems and defining scientific measures. Our model's key explanatory mechanism is the adoption of particular perspectives on a 2×2 matrix that categorizes the frequency counts of cases by some condition, treatment, risk, or outcome factor. By the selective steps of filtering, framing, and focusing on specific aspects, the measures used in various semantic domains negotiate distinct trade-offs between abstraction and specialization. As a consequence, the transparent communication of such measures must explicate the perspectives encapsulated in their derivation. To demonstrate the explanatory scope of our model, we use it to clarify theoretical debates on biases and facilitation effects in Bayesian reasoning and to integrate the scientific measures from various semantic domains within a unifying framework. A better understanding of problem structures, representational transparency, and the role of perspectives in the scientific process yields both theoretical insights and practical applications.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
150 Psychologie
Schlagwörter
2x2 matrix, contingency table, framing effects, Bayesian reasoning, problem solving, scientific measurement, transparency, visualization
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690NETH, Hansjörg, Nico GRADWOHL, Dirk STREEB, Daniel A. KEIM, Wolfgang GAISSMAIER, 2021. Perspectives on the 2×2 Matrix : Solving Semantically Distinct Problems Based on a Shared Structure of Binary Contingencies. In: Frontiers in Psychology. Frontiers Research Foundation. 2021, 11, 567817. eISSN 1664-1078. Available under: doi: 10.3389/fpsyg.2020.567817
BibTex
@article{Neth2021-02-09Persp-53044,
  year={2021},
  doi={10.3389/fpsyg.2020.567817},
  title={Perspectives on the 2×2 Matrix : Solving Semantically Distinct Problems Based on a Shared Structure of Binary Contingencies},
  volume={11},
  journal={Frontiers in Psychology},
  author={Neth, Hansjörg and Gradwohl, Nico and Streeb, Dirk and Keim, Daniel A. and Gaissmaier, Wolfgang},
  note={Article Number: 567817}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53044">
    <dc:creator>Gradwohl, Nico</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53044/1/Neth_2-1j38twtpn2rhq7.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-01T12:36:51Z</dc:date>
    <dcterms:abstract xml:lang="eng">Cognition is both empowered and limited by representations. The matrix lens model explicates tasks that are based on frequency counts, conditional probabilities, and binary contingencies in a general fashion. Based on a structural analysis of such tasks, the model links several problems and semantic domains and provides a new perspective on representational accounts of cognition that recognizes representational isomorphs as opportunities, rather than as problems. The shared structural construct of a 2×2 matrix supports a set of generic tasks and semantic mappings that provide a unifying framework for understanding problems and defining scientific measures. Our model's key explanatory mechanism is the adoption of particular perspectives on a 2×2 matrix that categorizes the frequency counts of cases by some condition, treatment, risk, or outcome factor. By the selective steps of filtering, framing, and focusing on specific aspects, the measures used in various semantic domains negotiate distinct trade-offs between abstraction and specialization. As a consequence, the transparent communication of such measures must explicate the perspectives encapsulated in their derivation. To demonstrate the explanatory scope of our model, we use it to clarify theoretical debates on biases and facilitation effects in Bayesian reasoning and to integrate the scientific measures from various semantic domains within a unifying framework. A better understanding of problem structures, representational transparency, and the role of perspectives in the scientific process yields both theoretical insights and practical applications.</dcterms:abstract>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53044"/>
    <dc:creator>Streeb, Dirk</dc:creator>
    <dcterms:title>Perspectives on the 2×2 Matrix : Solving Semantically Distinct Problems Based on a Shared Structure of Binary Contingencies</dcterms:title>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Streeb, Dirk</dc:contributor>
    <dc:contributor>Neth, Hansjörg</dc:contributor>
    <dc:contributor>Gaissmaier, Wolfgang</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-01T12:36:51Z</dcterms:available>
    <dcterms:issued>2021-02-09</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53044/1/Neth_2-1j38twtpn2rhq7.pdf"/>
    <dc:creator>Gaissmaier, Wolfgang</dc:creator>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:creator>Neth, Hansjörg</dc:creator>
    <dc:contributor>Gradwohl, Nico</dc:contributor>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen