Publikation: Single Image Tree Reconstruction via Adversarial Network
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Realistic 3D tree reconstruction is still a tedious and time-consuming task in the graphics community. In this paper, we propose a simple and efficient method for reconstructing 3D tree models with high fidelity from a single image. The key to single image-based tree reconstruction is to recover 3D shape information of trees via a deep neural network learned from a set of synthetic tree models. We adopted a conditional generative adversarial network (cGAN) to infer the 3D silhouette and skeleton of a tree respectively from edges extracted from the image and simple 2D strokes drawn by the user. Based on the predicted 3D silhouette and skeleton, a realistic tree model that inherits the tree shape in the input image can be generated using a procedural modeling technique. Experiments on varieties of tree examples demonstrate the efficiency and effectiveness of the proposed method in reconstructing realistic 3D tree models from a single image.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
LIU, Zhihao, Kai WU, Jianwei GUO, Yunhai WANG, Oliver DEUSSEN, Zhanglin CHENG, 2021. Single Image Tree Reconstruction via Adversarial Network. In: Graphical Models. Elsevier. 2021, 117, 101115. ISSN 1524-0703. eISSN 1524-0711. Available under: doi: 10.1016/j.gmod.2021.101115BibTex
@article{Liu2021Singl-54269, year={2021}, doi={10.1016/j.gmod.2021.101115}, title={Single Image Tree Reconstruction via Adversarial Network}, volume={117}, issn={1524-0703}, journal={Graphical Models}, author={Liu, Zhihao and Wu, Kai and Guo, Jianwei and Wang, Yunhai and Deussen, Oliver and Cheng, Zhanglin}, note={Article Number: 101115} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54269"> <dc:creator>Cheng, Zhanglin</dc:creator> <dc:contributor>Wu, Kai</dc:contributor> <dc:contributor>Deussen, Oliver</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-07-12T05:12:57Z</dcterms:available> <dcterms:issued>2021</dcterms:issued> <dc:contributor>Cheng, Zhanglin</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dc:creator>Liu, Zhihao</dc:creator> <dcterms:abstract xml:lang="eng">Realistic 3D tree reconstruction is still a tedious and time-consuming task in the graphics community. In this paper, we propose a simple and efficient method for reconstructing 3D tree models with high fidelity from a single image. The key to single image-based tree reconstruction is to recover 3D shape information of trees via a deep neural network learned from a set of synthetic tree models. We adopted a conditional generative adversarial network (cGAN) to infer the 3D silhouette and skeleton of a tree respectively from edges extracted from the image and simple 2D strokes drawn by the user. Based on the predicted 3D silhouette and skeleton, a realistic tree model that inherits the tree shape in the input image can be generated using a procedural modeling technique. Experiments on varieties of tree examples demonstrate the efficiency and effectiveness of the proposed method in reconstructing realistic 3D tree models from a single image.</dcterms:abstract> <dc:creator>Deussen, Oliver</dc:creator> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Guo, Jianwei</dc:contributor> <dcterms:title>Single Image Tree Reconstruction via Adversarial Network</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-07-12T05:12:57Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Liu, Zhihao</dc:contributor> <dc:contributor>Wang, Yunhai</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Wang, Yunhai</dc:creator> <dc:creator>Guo, Jianwei</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54269"/> <dc:creator>Wu, Kai</dc:creator> </rdf:Description> </rdf:RDF>