Publikation: Multiresolution Similarity Search in Image Databases
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Typically searching image collections is based on features of the images. In most cases the features are based on the color histogram of the images. Similarity search based on color histograms is very efficient, but the quality of the search results is often rather poor. One of the reasons is that histogram-based systems only support a specific form of global similarity using the whole histogram as one vector. But there is more information in a histogram than the distribution of colors. This paper has two contributions: (1) a new generalized similarity search method based on a wavelet transformation of the color histograms and (2) a new effectiveness measure for image similarity search. Our generalized similarity search method has been developed to allow the user to search for images with similarities on arbitrary detail levels of the color histogram. We show that our new approach is more general and more effective than previous approaches while retaining a competitive performance.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HECZKO, Martin, Alexander HINNEBURG, Daniel A. KEIM, Markus WAWRYNIUK, 2004. Multiresolution Similarity Search in Image Databases. In: Multimedia Systems. 2004, 10(1), pp. 28-40. ISSN 0942-4962. eISSN 1432-1882. Available under: doi: 10.1007/s00530-004-0135-6BibTex
@article{Heczko2004Multi-5647, year={2004}, doi={10.1007/s00530-004-0135-6}, title={Multiresolution Similarity Search in Image Databases}, number={1}, volume={10}, issn={0942-4962}, journal={Multimedia Systems}, pages={28--40}, author={Heczko, Martin and Hinneburg, Alexander and Keim, Daniel A. and Wawryniuk, Markus} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5647"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:57:29Z</dc:date> <dc:creator>Heczko, Martin</dc:creator> <dc:contributor>Hinneburg, Alexander</dc:contributor> <dcterms:issued>2004</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:57:29Z</dcterms:available> <dc:creator>Hinneburg, Alexander</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5647"/> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dc:contributor>Heczko, Martin</dc:contributor> <dc:format>application/pdf</dc:format> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5647/1/multisys.pdf"/> <dc:contributor>Wawryniuk, Markus</dc:contributor> <dcterms:title>Multiresolution Similarity Search in Image Databases</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:bibliographicCitation>First publ. in: Multimedia Systems 10 (2004), 1, pp. 28-40</dcterms:bibliographicCitation> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Wawryniuk, Markus</dc:creator> <dc:language>eng</dc:language> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5647/1/multisys.pdf"/> <dc:contributor>Keim, Daniel A.</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:abstract xml:lang="eng">Typically searching image collections is based on features of the images. In most cases the features are based on the color histogram of the images. Similarity search based on color histograms is very efficient, but the quality of the search results is often rather poor. One of the reasons is that histogram-based systems only support a specific form of global similarity using the whole histogram as one vector. But there is more information in a histogram than the distribution of colors. This paper has two contributions: (1) a new generalized similarity search method based on a wavelet transformation of the color histograms and (2) a new effectiveness measure for image similarity search. Our generalized similarity search method has been developed to allow the user to search for images with similarities on arbitrary detail levels of the color histogram. We show that our new approach is more general and more effective than previous approaches while retaining a competitive performance.</dcterms:abstract> </rdf:Description> </rdf:RDF>