Publikation:

Predicting toxicity of chemicals : software beats animal testing

Lade...
Vorschaubild

Dateien

Hartung_2-1hty12egi8x507.pdf
Hartung_2-1hty12egi8x507.pdfGröße: 918.16 KBDownloads: 361

Datum

2019

Autor:innen

Hartung, Thomas

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

European Union (EU): 681002

Projekt

EUToxRisk21
Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

EFSA Journal. 2019, 17(S1), e170710. eISSN 1831-4732. Available under: doi: 10.2903/j.efsa.2019.e170710

Zusammenfassung

We created earlier a large machine‐readable database of 10,000 chemicals and 800,000 associated studies by natural language processing of the public parts of Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) registrations until December 2014. This database was used to assess the reproducibility of the six most frequently used Organisation for Economic Co‐operation and Development (OECD) guideline tests. These tests consume 55% of all animals in safety testing in Europe, i.e. about 600,000 animals. With 350–750 chemicals with multiple results per test, reproducibility (balanced accuracy) was 81% and 69% of toxic substances were found again in a repeat experiment (sensitivity 69%). Inspired by the increasingly used read‐across approach, we created a new type of QSAR, which is based on similarity of chemicals and not on chemical descriptors. A landscape of the chemical universe using 10 million structures was calculated, when based on Tanimoto indices similar chemicals are close and dissimilar chemicals far from each other. This allows placing any chemical of interest into the map and evaluating the information available for surrounding chemicals. In a data fusion approach, in which 74 different properties were taken into consideration, machine learning (random forest) allowed a fivefold cross‐validation for 190,000 (non‐) hazard labels of chemicals for which nine hazards were predicted. The balanced accuracy of this approach was 87% with a sensitivity of 89%. Each prediction comes with a certainty measure based on the homogeneity of data and distance of neighbours. Ongoing developments and future opportunities are discussed.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

alternatives to animal testing, computational toxicology, read‐across, risk assessment

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HARTUNG, Thomas, 2019. Predicting toxicity of chemicals : software beats animal testing. In: EFSA Journal. 2019, 17(S1), e170710. eISSN 1831-4732. Available under: doi: 10.2903/j.efsa.2019.e170710
BibTex
@article{Hartung2019-07Predi-46395,
  year={2019},
  doi={10.2903/j.efsa.2019.e170710},
  title={Predicting toxicity of chemicals : software beats animal testing},
  number={S1},
  volume={17},
  journal={EFSA Journal},
  author={Hartung, Thomas},
  note={Article Number: e170710}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46395">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/46395"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46395/3/Hartung_2-1hty12egi8x507.pdf"/>
    <dc:contributor>Hartung, Thomas</dc:contributor>
    <dcterms:abstract xml:lang="eng">We created earlier a large machine‐readable database of 10,000 chemicals and 800,000 associated studies by natural language processing of the public parts of Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) registrations until December 2014. This database was used to assess the reproducibility of the six most frequently used Organisation for Economic Co‐operation and Development (OECD) guideline tests. These tests consume 55% of all animals in safety testing in Europe, i.e. about 600,000 animals. With 350–750 chemicals with multiple results per test, reproducibility (balanced accuracy) was 81% and 69% of toxic substances were found again in a repeat experiment (sensitivity 69%). Inspired by the increasingly used read‐across approach, we created a new type of QSAR, which is based on similarity of chemicals and not on chemical descriptors. A landscape of the chemical universe using 10 million structures was calculated, when based on Tanimoto indices similar chemicals are close and dissimilar chemicals far from each other. This allows placing any chemical of interest into the map and evaluating the information available for surrounding chemicals. In a data fusion approach, in which 74 different properties were taken into consideration, machine learning (random forest) allowed a fivefold cross‐validation for 190,000 (non‐) hazard labels of chemicals for which nine hazards were predicted. The balanced accuracy of this approach was 87% with a sensitivity of 89%. Each prediction comes with a certainty measure based on the homogeneity of data and distance of neighbours. Ongoing developments and future opportunities are discussed.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-07-16T12:19:52Z</dcterms:available>
    <dc:rights>Attribution-NoDerivatives 4.0 International</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46395/3/Hartung_2-1hty12egi8x507.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nd/4.0/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-07-16T12:19:52Z</dc:date>
    <dc:creator>Hartung, Thomas</dc:creator>
    <dcterms:title>Predicting toxicity of chemicals : software beats animal testing</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2019-07</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen