Publikation:

Fuzzy Clustering in Parallel Universes with Noise Detection

Lade...
Vorschaubild

Datum

2005

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

IEEE International Conference on Data Mining, Workshop Computational Intelligence in Data Mining. 2005, pp. 29-37

Zusammenfassung

We present an extension of the fuzzy c-Means algorithm that operates on different feature spaces, so-called parallel universes, simultaneously and also incorporates noise detection. The method assigns membership values of patterns to different universes, which are then adopted throughout the training. This leads to better clustering results since patterns not contributing to clustering in a universe are (completely or partially) ignored. The method also uses an auxiliary universe to capture patterns that do not contribute to any of the clusters in the real universes and therefore likely represent noise. The outcome of the algorithm are clusters distributed over different parallel universes, each modeling a particular, potentially overlapping, subset of the data and a set of patterns detected as noise. One potential target application of the proposed method is biological data analysis where different descriptors for molecules are available but none of them by itself shows global satisfactory prediction results. In this paper we show how the fuzzy c-Means algorithm can be extended to operate in parallel universes and illustrate the usefulness of this method using results on artificial data sets.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

ICDM, 2005, Houston, TX, USA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690WISWEDEL, Bernd, Michael R. BERTHOLD, 2005. Fuzzy Clustering in Parallel Universes with Noise Detection. ICDM. Houston, TX, USA, 2005. In: IEEE International Conference on Data Mining, Workshop Computational Intelligence in Data Mining. 2005, pp. 29-37
BibTex
@inproceedings{Wiswedel2005Fuzzy-5422,
  year={2005},
  title={Fuzzy Clustering in Parallel Universes with Noise Detection},
  booktitle={IEEE International Conference on Data Mining, Workshop Computational Intelligence in Data Mining},
  pages={29--37},
  author={Wiswedel, Bernd and Berthold, Michael R.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5422">
    <dc:contributor>Berthold, Michael R.</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Wiswedel, Bernd</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5422/1/Fuzzy_Clustering_in_Parallel_Universes_with_Noise_Detection.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:15Z</dcterms:available>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5422"/>
    <dcterms:title>Fuzzy Clustering in Parallel Universes with Noise Detection</dcterms:title>
    <dcterms:bibliographicCitation>First publ. in: IEEE International Conference on Data Mining, Workshop Computational Intelligence in Data Mining (ICDM 05, Houston, TX, USA), 2005, pp. 29-37</dcterms:bibliographicCitation>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:15Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:format>application/pdf</dc:format>
    <dcterms:abstract xml:lang="eng">We present an extension of the fuzzy c-Means algorithm that operates on different feature spaces, so-called parallel universes, simultaneously and also incorporates noise detection. The method assigns membership values of patterns to different universes, which are then adopted throughout the training. This leads to better clustering results since patterns not contributing to clustering in a universe are (completely or partially) ignored. The method also uses an auxiliary universe to capture patterns that do not contribute to any of the clusters in the real universes and therefore likely represent noise. The outcome of the algorithm are clusters distributed over different parallel universes, each modeling a particular, potentially overlapping, subset of the data and a set of patterns detected as noise. One potential target application of the proposed method is biological data analysis where different descriptors for molecules are available but none of them by itself shows global satisfactory prediction results. In this paper we show how the fuzzy c-Means algorithm can be extended to operate in parallel universes and illustrate the usefulness of this method using results on artificial data sets.</dcterms:abstract>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dcterms:issued>2005</dcterms:issued>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5422/1/Fuzzy_Clustering_in_Parallel_Universes_with_Noise_Detection.pdf"/>
    <dc:contributor>Wiswedel, Bernd</dc:contributor>
    <dc:creator>Berthold, Michael R.</dc:creator>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen