Publikation: Fuzzy Clustering in Parallel Universes with Noise Detection
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We present an extension of the fuzzy c-Means algorithm that operates on different feature spaces, so-called parallel universes, simultaneously and also incorporates noise detection. The method assigns membership values of patterns to different universes, which are then adopted throughout the training. This leads to better clustering results since patterns not contributing to clustering in a universe are (completely or partially) ignored. The method also uses an auxiliary universe to capture patterns that do not contribute to any of the clusters in the real universes and therefore likely represent noise. The outcome of the algorithm are clusters distributed over different parallel universes, each modeling a particular, potentially overlapping, subset of the data and a set of patterns detected as noise. One potential target application of the proposed method is biological data analysis where different descriptors for molecules are available but none of them by itself shows global satisfactory prediction results. In this paper we show how the fuzzy c-Means algorithm can be extended to operate in parallel universes and illustrate the usefulness of this method using results on artificial data sets.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WISWEDEL, Bernd, Michael R. BERTHOLD, 2005. Fuzzy Clustering in Parallel Universes with Noise Detection. ICDM. Houston, TX, USA, 2005. In: IEEE International Conference on Data Mining, Workshop Computational Intelligence in Data Mining. 2005, pp. 29-37BibTex
@inproceedings{Wiswedel2005Fuzzy-5422, year={2005}, title={Fuzzy Clustering in Parallel Universes with Noise Detection}, booktitle={IEEE International Conference on Data Mining, Workshop Computational Intelligence in Data Mining}, pages={29--37}, author={Wiswedel, Bernd and Berthold, Michael R.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5422"> <dc:contributor>Berthold, Michael R.</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Wiswedel, Bernd</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5422/1/Fuzzy_Clustering_in_Parallel_Universes_with_Noise_Detection.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:15Z</dcterms:available> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5422"/> <dcterms:title>Fuzzy Clustering in Parallel Universes with Noise Detection</dcterms:title> <dcterms:bibliographicCitation>First publ. in: IEEE International Conference on Data Mining, Workshop Computational Intelligence in Data Mining (ICDM 05, Houston, TX, USA), 2005, pp. 29-37</dcterms:bibliographicCitation> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:15Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:format>application/pdf</dc:format> <dcterms:abstract xml:lang="eng">We present an extension of the fuzzy c-Means algorithm that operates on different feature spaces, so-called parallel universes, simultaneously and also incorporates noise detection. The method assigns membership values of patterns to different universes, which are then adopted throughout the training. This leads to better clustering results since patterns not contributing to clustering in a universe are (completely or partially) ignored. The method also uses an auxiliary universe to capture patterns that do not contribute to any of the clusters in the real universes and therefore likely represent noise. The outcome of the algorithm are clusters distributed over different parallel universes, each modeling a particular, potentially overlapping, subset of the data and a set of patterns detected as noise. One potential target application of the proposed method is biological data analysis where different descriptors for molecules are available but none of them by itself shows global satisfactory prediction results. In this paper we show how the fuzzy c-Means algorithm can be extended to operate in parallel universes and illustrate the usefulness of this method using results on artificial data sets.</dcterms:abstract> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <dcterms:issued>2005</dcterms:issued> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5422/1/Fuzzy_Clustering_in_Parallel_Universes_with_Noise_Detection.pdf"/> <dc:contributor>Wiswedel, Bernd</dc:contributor> <dc:creator>Berthold, Michael R.</dc:creator> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>