Publikation:

Exploring the One-brain Barrier : a Manual Contribution to the NTCIR-12 MathIR Task

Lade...
Vorschaubild

Dateien

Schubotz_2-1gtntlbbvm6yx6.pdf
Schubotz_2-1gtntlbbvm6yx6.pdfGröße: 670.95 KBDownloads: 161

Datum

2016

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

KANDO, Noriko, ed. and others. Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies : June 7-10,2016 : Tokyo Japan. Tokyo: National Institute of Informatics, 2016, pp. 309-317. ISBN 978-4-86049-071-3

Zusammenfassung

This paper compares the search capabilities of a single human brain supported by the text search built into Wikipedia with state-of-the-art math search systems. To achieve this, we compare results of manual Wikipedia searches with the aggregated and assessed results of all systems participating in the NTCIR-12 MathIR Wikipedia Task. For 26 of the 30 topics, the average relevance score of our manually retrieved results exceeded the average relevance score of other participants by more than one standard deviation. However, math search engines at large achieved better recall and retrieved highly relevant results that our ‘single-brain system’ missed for 12 topics. By categorizing the topics of NTCIR-12 into six types of queries, we observe a particular strength of math search engines to answer queries of the types ‘definition lookup’ and ‘application look-up’. However, we see the low precision of current math search engines as the main challenge that prevents their wide-spread adoption in STEM research. By combining our results with highly relevant results of all other participants, we compile a new gold standard dataset and a dataset of duplicate content items. We discuss how the two datasets can be used to improve the query formulation and content augmentation capabilities of match search engines in the future.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Math Search, MathML, Manual Contribution

Konferenz

12th NTCIR Conference on Evaluation of Information Access Technologies, 7. Juni 2016 - 10. Juni 2016, Tokyo, Japan
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SCHUBOTZ, Moritz, Norman MEUSCHKE, Marcus LEICH, Bela GIPP, 2016. Exploring the One-brain Barrier : a Manual Contribution to the NTCIR-12 MathIR Task. 12th NTCIR Conference on Evaluation of Information Access Technologies. Tokyo, Japan, 7. Juni 2016 - 10. Juni 2016. In: KANDO, Noriko, ed. and others. Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies : June 7-10,2016 : Tokyo Japan. Tokyo: National Institute of Informatics, 2016, pp. 309-317. ISBN 978-4-86049-071-3
BibTex
@inproceedings{Schubotz2016Explo-41996,
  year={2016},
  title={Exploring the One-brain Barrier : a Manual Contribution to the NTCIR-12 MathIR Task},
  isbn={978-4-86049-071-3},
  publisher={National Institute of Informatics},
  address={Tokyo},
  booktitle={Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies : June 7-10,2016 : Tokyo Japan},
  pages={309--317},
  editor={Kando, Noriko},
  author={Schubotz, Moritz and Meuschke, Norman and Leich, Marcus and Gipp, Bela}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41996">
    <dc:contributor>Gipp, Bela</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41996"/>
    <dc:creator>Gipp, Bela</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-04-10T09:35:09Z</dcterms:available>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41996/1/Schubotz_2-1gtntlbbvm6yx6.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Leich, Marcus</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Exploring the One-brain Barrier : a Manual Contribution to the NTCIR-12 MathIR Task</dcterms:title>
    <dc:contributor>Meuschke, Norman</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">This paper compares the search capabilities of a single human brain supported by the text search built into Wikipedia with state-of-the-art math search systems. To achieve this, we compare results of manual Wikipedia searches with the aggregated and assessed results of all systems participating in the NTCIR-12 MathIR Wikipedia Task. For 26 of the 30 topics, the average relevance score of our manually retrieved results exceeded the average relevance score of other participants by more than one standard deviation. However, math search engines at large achieved better recall and retrieved highly relevant results that our ‘single-brain system’ missed for 12 topics. By categorizing the topics of NTCIR-12 into six types of queries, we observe a particular strength of math search engines to answer queries of the types ‘definition lookup’ and ‘application look-up’. However, we see the low precision of current math search engines as the main challenge that prevents their wide-spread adoption in STEM research. By combining our results with highly relevant results of all other participants, we compile a new gold standard dataset and a dataset of duplicate content items. We discuss how the two datasets can be used to improve the query formulation and content augmentation capabilities of match search engines in the future.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41996/1/Schubotz_2-1gtntlbbvm6yx6.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Schubotz, Moritz</dc:contributor>
    <dc:creator>Schubotz, Moritz</dc:creator>
    <dc:creator>Meuschke, Norman</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-04-10T09:35:09Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Leich, Marcus</dc:contributor>
    <dcterms:issued>2016</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen