Publikation:

An Algebraic Perspective on Multivariate Tight Wavelet Frames

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2013

Autor:innen

Charina, Maria
Putinar, Mihai
Stöckler, Joachim

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Constructive Approximation. 2013, 38(2), pp. 253-276. ISSN 0176-4276. eISSN 1432-0940. Available under: doi: 10.1007/s00365-013-9191-5

Zusammenfassung

Recent advances in real algebraic geometry and in the theory of polynomial optimization are applied to answer some open questions in the theory of multivariate tight wavelet frames whose generators have at least one vanishing moment. Namely, several equivalent formulations of the so-called Unitary Extension Principle (UEP) are given in terms of Hermitian sums of squares of certain nonnegative Laurent polynomials and in terms of semidefinite programming. These formulations merge recent advances in real algebraic geometry and wavelet frame theory and lead to an affirmative answer to the long-standing open question of the existence of tight wavelet frames in dimension d=2. They also provide, for every d, efficient numerical methods for checking the existence of tight wavelet frames and for their construction. A class of counterexamples in dimension d=3 show that, in general, the so-called sub-QMF condition is not sufficient for the existence of tight wavelet frames. Stronger sufficient conditions for determining the existence of tight wavelet frames in dimension d≥3 are derived. The results are illustrated on several examples.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690CHARINA, Maria, Mihai PUTINAR, Claus SCHEIDERER, Joachim STÖCKLER, 2013. An Algebraic Perspective on Multivariate Tight Wavelet Frames. In: Constructive Approximation. 2013, 38(2), pp. 253-276. ISSN 0176-4276. eISSN 1432-0940. Available under: doi: 10.1007/s00365-013-9191-5
BibTex
@article{Charina2013-10Algeb-41883,
  year={2013},
  doi={10.1007/s00365-013-9191-5},
  title={An Algebraic Perspective on Multivariate Tight Wavelet Frames},
  number={2},
  volume={38},
  issn={0176-4276},
  journal={Constructive Approximation},
  pages={253--276},
  author={Charina, Maria and Putinar, Mihai and Scheiderer, Claus and Stöckler, Joachim}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41883">
    <dc:contributor>Putinar, Mihai</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Putinar, Mihai</dc:creator>
    <dc:creator>Charina, Maria</dc:creator>
    <dc:contributor>Stöckler, Joachim</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Scheiderer, Claus</dc:creator>
    <dcterms:abstract xml:lang="eng">Recent advances in real algebraic geometry and in the theory of polynomial optimization are applied to answer some open questions in the theory of multivariate tight wavelet frames whose generators have at least one vanishing moment. Namely, several equivalent formulations of the so-called Unitary Extension Principle (UEP) are given in terms of Hermitian sums of squares of certain nonnegative Laurent polynomials and in terms of semidefinite programming. These formulations merge recent advances in real algebraic geometry and wavelet frame theory and lead to an affirmative answer to the long-standing open question of the existence of tight wavelet frames in dimension d=2. They also provide, for every d, efficient numerical methods for checking the existence of tight wavelet frames and for their construction. A class of counterexamples in dimension d=3 show that, in general, the so-called sub-QMF condition is not sufficient for the existence of tight wavelet frames. Stronger sufficient conditions for determining the existence of tight wavelet frames in dimension d≥3 are derived. The results are illustrated on several examples.</dcterms:abstract>
    <dcterms:issued>2013-10</dcterms:issued>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Charina, Maria</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-03-21T12:36:58Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41883"/>
    <dc:creator>Stöckler, Joachim</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Scheiderer, Claus</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-03-21T12:36:58Z</dc:date>
    <dcterms:title>An Algebraic Perspective on Multivariate Tight Wavelet Frames</dcterms:title>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen