Publikation: An Algebraic Perspective on Multivariate Tight Wavelet Frames
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Recent advances in real algebraic geometry and in the theory of polynomial optimization are applied to answer some open questions in the theory of multivariate tight wavelet frames whose generators have at least one vanishing moment. Namely, several equivalent formulations of the so-called Unitary Extension Principle (UEP) are given in terms of Hermitian sums of squares of certain nonnegative Laurent polynomials and in terms of semidefinite programming. These formulations merge recent advances in real algebraic geometry and wavelet frame theory and lead to an affirmative answer to the long-standing open question of the existence of tight wavelet frames in dimension d=2. They also provide, for every d, efficient numerical methods for checking the existence of tight wavelet frames and for their construction. A class of counterexamples in dimension d=3 show that, in general, the so-called sub-QMF condition is not sufficient for the existence of tight wavelet frames. Stronger sufficient conditions for determining the existence of tight wavelet frames in dimension d≥3 are derived. The results are illustrated on several examples.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
CHARINA, Maria, Mihai PUTINAR, Claus SCHEIDERER, Joachim STÖCKLER, 2013. An Algebraic Perspective on Multivariate Tight Wavelet Frames. In: Constructive Approximation. 2013, 38(2), pp. 253-276. ISSN 0176-4276. eISSN 1432-0940. Available under: doi: 10.1007/s00365-013-9191-5BibTex
@article{Charina2013-10Algeb-41883, year={2013}, doi={10.1007/s00365-013-9191-5}, title={An Algebraic Perspective on Multivariate Tight Wavelet Frames}, number={2}, volume={38}, issn={0176-4276}, journal={Constructive Approximation}, pages={253--276}, author={Charina, Maria and Putinar, Mihai and Scheiderer, Claus and Stöckler, Joachim} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41883"> <dc:contributor>Putinar, Mihai</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Putinar, Mihai</dc:creator> <dc:creator>Charina, Maria</dc:creator> <dc:contributor>Stöckler, Joachim</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Scheiderer, Claus</dc:creator> <dcterms:abstract xml:lang="eng">Recent advances in real algebraic geometry and in the theory of polynomial optimization are applied to answer some open questions in the theory of multivariate tight wavelet frames whose generators have at least one vanishing moment. Namely, several equivalent formulations of the so-called Unitary Extension Principle (UEP) are given in terms of Hermitian sums of squares of certain nonnegative Laurent polynomials and in terms of semidefinite programming. These formulations merge recent advances in real algebraic geometry and wavelet frame theory and lead to an affirmative answer to the long-standing open question of the existence of tight wavelet frames in dimension d=2. They also provide, for every d, efficient numerical methods for checking the existence of tight wavelet frames and for their construction. A class of counterexamples in dimension d=3 show that, in general, the so-called sub-QMF condition is not sufficient for the existence of tight wavelet frames. Stronger sufficient conditions for determining the existence of tight wavelet frames in dimension d≥3 are derived. The results are illustrated on several examples.</dcterms:abstract> <dcterms:issued>2013-10</dcterms:issued> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Charina, Maria</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-03-21T12:36:58Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41883"/> <dc:creator>Stöckler, Joachim</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Scheiderer, Claus</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-03-21T12:36:58Z</dc:date> <dcterms:title>An Algebraic Perspective on Multivariate Tight Wavelet Frames</dcterms:title> </rdf:Description> </rdf:RDF>