Publikation: A Family of 2{alef}1 Logarithmic Functions of Distinct Growth Rates
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2010
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Central European Journal of Mathematics. 2010, 8(6), pp. 1026-1028. ISSN 1895-1074. Available under: doi: 10.2478/s11533-010-0070-z
Zusammenfassung
We construct a totally ordered set Γ of positive infinite germs (i.e. germs of positive real-valued functions that tend to +∞), with order type being the lexicographic product ℵ1 × ℤ2. We show that Γ admits 2N1 order preserving automorphisms of pairwise distinct growth rates.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Germs of real valued functions, Growth rate, Asymptotic scale, Lexicographic order, Automorphims of ordered sets
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
KUHLMANN, Salma, 2010. A Family of 2{alef}1 Logarithmic Functions of Distinct Growth Rates. In: Central European Journal of Mathematics. 2010, 8(6), pp. 1026-1028. ISSN 1895-1074. Available under: doi: 10.2478/s11533-010-0070-zBibTex
@article{Kuhlmann2010Famil-12754, year={2010}, doi={10.2478/s11533-010-0070-z}, title={A Family of 2{alef}1 Logarithmic Functions of Distinct Growth Rates}, number={6}, volume={8}, issn={1895-1074}, journal={Central European Journal of Mathematics}, pages={1026--1028}, author={Kuhlmann, Salma} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/12754"> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/12754"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:bibliographicCitation>First publ. in: Central European Journal of Mathematics ; 8 (2010), 6. - pp. 1026-1028</dcterms:bibliographicCitation> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-09-07T07:21:58Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-09-07T07:21:58Z</dc:date> <dcterms:title>A Family of 2{alef}1 Logarithmic Functions of Distinct Growth Rates</dcterms:title> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:abstract xml:lang="eng">We construct a totally ordered set Γ of positive infinite germs (i.e. germs of positive real-valued functions that tend to +∞), with order type being the lexicographic product ℵ1 × ℤ2. We show that Γ admits 2N1 order preserving automorphisms of pairwise distinct growth rates.</dcterms:abstract> <dc:language>eng</dc:language> <dc:creator>Kuhlmann, Salma</dc:creator> <dcterms:issued>2010</dcterms:issued> <dc:contributor>Kuhlmann, Salma</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja