Publikation: Pixnostics : Towards Measuring the Value of Visualization
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
During the last two decades a wide variety of advanced methods for the visual exploration of large data sets have been proposed. For most of these techniques user interaction has become a crucial element, since there are many situations in which a user or an analyst has to select the right parameter settings from among many or select a subset of the available attribute space for the visualization process, in order to construct valuable visualizations that provide insight, into the data and reveal interesting patterns. The right choice of input parameters is often essential, since suboptimal parameter settings or the investigation of irrelevant data dimensions make the exploration process more time consuming and may result in wrong conclusions. In this paper we propose a novel method for automatically determining meaningful parameter- and attribute settings based on the information content of the resulting visualizations. Our technique called Pixnostics, in analogy to Scagnostics (Wilkinson et al., 2005), automatically analyses pixel images resulting from diverse parameter mappings and ranks them according to the potential value for the user. This allows a more effective and more efficient visual data analysis process, since the attribute/parameter space is reduced to meaningful selections and thus the analyst obtains faster insight into the data. Real world applications are provided to show the benefit of the proposed approach
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SCHNEIDEWIND, Jorn, Mike SIPS, Daniel A. KEIM, 2006. Pixnostics : Towards Measuring the Value of Visualization. 2006 IEEE Symposium On Visual Analytics And Technology. Baltimore, MD, USA, 31. Okt. 2006 - 31. Okt. 2006. In: WONG, Pak Chung, ed., Daniel A. KEIM, ed.. 2006 IEEE Symposium On Visual Analytics And Technology. Piscataway: IEEE, 2006, pp. 199-206. ISBN 1-4244-0592-0. Available under: doi: 10.1109/VAST.2006.261423BibTex
@inproceedings{Schneidewind2006Pixno-40710,
year={2006},
doi={10.1109/VAST.2006.261423},
title={Pixnostics : Towards Measuring the Value of Visualization},
isbn={1-4244-0592-0},
publisher={IEEE},
address={Piscataway},
booktitle={2006 IEEE Symposium On Visual Analytics And Technology},
pages={199--206},
editor={Wong, Pak Chung and Keim, Daniel A.},
author={Schneidewind, Jorn and Sips, Mike and Keim, Daniel A.}
}RDF
<rdf:RDF
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:bibo="http://purl.org/ontology/bibo/"
xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:void="http://rdfs.org/ns/void#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >
<rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40710">
<dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-11-22T11:26:49Z</dc:date>
<dc:contributor>Keim, Daniel A.</dc:contributor>
<dc:contributor>Sips, Mike</dc:contributor>
<dc:creator>Sips, Mike</dc:creator>
<dcterms:title>Pixnostics : Towards Measuring the Value of Visualization</dcterms:title>
<dc:contributor>Schneidewind, Jorn</dc:contributor>
<bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40710"/>
<dcterms:issued>2006</dcterms:issued>
<dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
<dcterms:abstract xml:lang="eng">During the last two decades a wide variety of advanced methods for the visual exploration of large data sets have been proposed. For most of these techniques user interaction has become a crucial element, since there are many situations in which a user or an analyst has to select the right parameter settings from among many or select a subset of the available attribute space for the visualization process, in order to construct valuable visualizations that provide insight, into the data and reveal interesting patterns. The right choice of input parameters is often essential, since suboptimal parameter settings or the investigation of irrelevant data dimensions make the exploration process more time consuming and may result in wrong conclusions. In this paper we propose a novel method for automatically determining meaningful parameter- and attribute settings based on the information content of the resulting visualizations. Our technique called Pixnostics, in analogy to Scagnostics (Wilkinson et al., 2005), automatically analyses pixel images resulting from diverse parameter mappings and ranks them according to the potential value for the user. This allows a more effective and more efficient visual data analysis process, since the attribute/parameter space is reduced to meaningful selections and thus the analyst obtains faster insight into the data. Real world applications are provided to show the benefit of the proposed approach</dcterms:abstract>
<dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
<dc:creator>Keim, Daniel A.</dc:creator>
<dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-11-22T11:26:49Z</dcterms:available>
<void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
<dc:creator>Schneidewind, Jorn</dc:creator>
<foaf:homepage rdf:resource="http://localhost:8080/"/>
<dc:language>eng</dc:language>
</rdf:Description>
</rdf:RDF>