Publikation:

Pixnostics : Towards Measuring the Value of Visualization

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2006

Autor:innen

Schneidewind, Jorn
Sips, Mike

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

WONG, Pak Chung, ed., Daniel A. KEIM, ed.. 2006 IEEE Symposium On Visual Analytics And Technology. Piscataway: IEEE, 2006, pp. 199-206. ISBN 1-4244-0592-0. Available under: doi: 10.1109/VAST.2006.261423

Zusammenfassung

During the last two decades a wide variety of advanced methods for the visual exploration of large data sets have been proposed. For most of these techniques user interaction has become a crucial element, since there are many situations in which a user or an analyst has to select the right parameter settings from among many or select a subset of the available attribute space for the visualization process, in order to construct valuable visualizations that provide insight, into the data and reveal interesting patterns. The right choice of input parameters is often essential, since suboptimal parameter settings or the investigation of irrelevant data dimensions make the exploration process more time consuming and may result in wrong conclusions. In this paper we propose a novel method for automatically determining meaningful parameter- and attribute settings based on the information content of the resulting visualizations. Our technique called Pixnostics, in analogy to Scagnostics (Wilkinson et al., 2005), automatically analyses pixel images resulting from diverse parameter mappings and ranks them according to the potential value for the user. This allows a more effective and more efficient visual data analysis process, since the attribute/parameter space is reduced to meaningful selections and thus the analyst obtains faster insight into the data. Real world applications are provided to show the benefit of the proposed approach

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Digital computer simulation -- Congresses; Visual analytics -- Congresses; Information visualization -- Congresses; Computer graphics -- Congresses

Konferenz

2006 IEEE Symposium On Visual Analytics And Technology, 31. Okt. 2006 - 31. Okt. 2006, Baltimore, MD, USA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SCHNEIDEWIND, Jorn, Mike SIPS, Daniel A. KEIM, 2006. Pixnostics : Towards Measuring the Value of Visualization. 2006 IEEE Symposium On Visual Analytics And Technology. Baltimore, MD, USA, 31. Okt. 2006 - 31. Okt. 2006. In: WONG, Pak Chung, ed., Daniel A. KEIM, ed.. 2006 IEEE Symposium On Visual Analytics And Technology. Piscataway: IEEE, 2006, pp. 199-206. ISBN 1-4244-0592-0. Available under: doi: 10.1109/VAST.2006.261423
BibTex
@inproceedings{Schneidewind2006Pixno-40710,
  year={2006},
  doi={10.1109/VAST.2006.261423},
  title={Pixnostics : Towards Measuring the Value of Visualization},
  isbn={1-4244-0592-0},
  publisher={IEEE},
  address={Piscataway},
  booktitle={2006 IEEE Symposium On Visual Analytics And Technology},
  pages={199--206},
  editor={Wong, Pak Chung and Keim, Daniel A.},
  author={Schneidewind, Jorn and Sips, Mike and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40710">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-11-22T11:26:49Z</dc:date>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:contributor>Sips, Mike</dc:contributor>
    <dc:creator>Sips, Mike</dc:creator>
    <dcterms:title>Pixnostics : Towards Measuring the Value of Visualization</dcterms:title>
    <dc:contributor>Schneidewind, Jorn</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40710"/>
    <dcterms:issued>2006</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">During the last two decades a wide variety of advanced methods for the visual exploration of large data sets have been proposed. For most of these techniques user interaction has become a crucial element, since there are many situations in which a user or an analyst has to select the right parameter settings from among many or select a subset of the available attribute space for the visualization process, in order to construct valuable visualizations that provide insight, into the data and reveal interesting patterns. The right choice of input parameters is often essential, since suboptimal parameter settings or the investigation of irrelevant data dimensions make the exploration process more time consuming and may result in wrong conclusions. In this paper we propose a novel method for automatically determining meaningful parameter- and attribute settings based on the information content of the resulting visualizations. Our technique called Pixnostics, in analogy to Scagnostics (Wilkinson et al., 2005), automatically analyses pixel images resulting from diverse parameter mappings and ranks them according to the potential value for the user. This allows a more effective and more efficient visual data analysis process, since the attribute/parameter space is reduced to meaningful selections and thus the analyst obtains faster insight into the data. Real world applications are provided to show the benefit of the proposed approach</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-11-22T11:26:49Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Schneidewind, Jorn</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen