Publikation: Do We Run Large-scale Multi-Robot Systems on the Edge? More Evidence for Two-Phase Performance in System Size Scaling
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
With increasing numbers of mobile robots arriving in real-world applications, more robots coexist in the same space, interact, and possibly collaborate. Methods to provide such systems with system size scalability are known, for example, from swarm robotics. Example strategies are self-organizing behavior, a strict decentralized approach, and limiting the robot-robot communication. Despite applying such strategies, any multi-robot system breaks above a certain critical system size (i.e., number of robots) as too many robots share a resource (e.g., space, communication channel). We provide additional evidence based on simulations, that at these critical system sizes, the system performance separates into two phases: nearly optimal and minimal performance. We speculate that in real-world applications that are configured for optimal system size, the supposedly high-performing system may actually live on borrowed time as it is on a transient to breakdown. We provide two modeling options (based on queueing theory and a population model) that may help to support this reasoning.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KUCKLING, Jonas, Robert LUCKEY, Viktor AVRUTIN, Andrew VARDY, Andreagiovanni REINA, Heiko HAMANN, 2024. Do We Run Large-scale Multi-Robot Systems on the Edge? More Evidence for Two-Phase Performance in System Size Scaling. IEEE International Conference on Robotics and Automation (ICRA 2024). Yokohama, Japan, 13. Mai 2024 - 17. Mai 2024. In: IEEE International Conference on Robotics and Automation (ICRA 2024). Piscataway, NJ: IEEE, 2024, S. 4562-4568. ISBN 979-8-3503-8457-4. Verfügbar unter: doi: 10.1109/ICRA57147.2024.10610771BibTex
@inproceedings{Kuckling2024Large-70367, year={2024}, doi={10.1109/ICRA57147.2024.10610771}, title={Do We Run Large-scale Multi-Robot Systems on the Edge? More Evidence for Two-Phase Performance in System Size Scaling}, isbn={979-8-3503-8457-4}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={IEEE International Conference on Robotics and Automation (ICRA 2024)}, pages={4562--4568}, author={Kuckling, Jonas and Luckey, Robert and Avrutin, Viktor and Vardy, Andrew and Reina, Andreagiovanni and Hamann, Heiko} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70367"> <dc:contributor>Reina, Andreagiovanni</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Hamann, Heiko</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70367/1/Kuckling_2-1fi4r2ayd31qx6.PDF"/> <dc:creator>Hamann, Heiko</dc:creator> <dc:creator>Kuckling, Jonas</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dc:contributor>Luckey, Robert</dc:contributor> <dc:creator>Reina, Andreagiovanni</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Avrutin, Viktor</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Vardy, Andrew</dc:contributor> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-07-10T07:57:48Z</dc:date> <dc:creator>Vardy, Andrew</dc:creator> <dc:creator>Avrutin, Viktor</dc:creator> <dc:creator>Luckey, Robert</dc:creator> <dc:contributor>Kuckling, Jonas</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70367"/> <dcterms:abstract>With increasing numbers of mobile robots arriving in real-world applications, more robots coexist in the same space, interact, and possibly collaborate. Methods to provide such systems with system size scalability are known, for example, from swarm robotics. Example strategies are self-organizing behavior, a strict decentralized approach, and limiting the robot-robot communication. Despite applying such strategies, any multi-robot system breaks above a certain critical system size (i.e., number of robots) as too many robots share a resource (e.g., space, communication channel). We provide additional evidence based on simulations, that at these critical system sizes, the system performance separates into two phases: nearly optimal and minimal performance. We speculate that in real-world applications that are configured for optimal system size, the supposedly high-performing system may actually live on borrowed time as it is on a transient to breakdown. We provide two modeling options (based on queueing theory and a population model) that may help to support this reasoning.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70367/1/Kuckling_2-1fi4r2ayd31qx6.PDF"/> <dcterms:issued>2024</dcterms:issued> <dcterms:title>Do We Run Large-scale Multi-Robot Systems on the Edge? More Evidence for Two-Phase Performance in System Size Scaling</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-07-10T07:57:48Z</dcterms:available> </rdf:Description> </rdf:RDF>