Publikation: Causal Reasoning for Safety in Hennessy Milner Logic
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Determining and computing root causes in system failures is a significant issue in science and engineering. In this paper, we introduce a notion of causality for explaining counterexamples in system analysis based on formal models. The counter-examples are produced by checking for hazardous situations expressed in the Hennessy-Milner Logic, in the context of Labelled Transition System models. We also introduce CauseJMu, a tool for automatically identifying such causal computations within a system model. CauseJMu relies on encoding causality in terms of an extension of Hennessy-Milner Logic to recursive formulae with data. The encodings enable deciding whether a certain computation is causal or not, using the mCRL2 model checker.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
CALTAIS, Georgiana, Mohammad Reza MOUSAVI, Hargurbir SINGH, 2020. Causal Reasoning for Safety in Hennessy Milner Logic. In: Fundamenta Informaticae. IOS Press. 2020, 173(2-3), pp. 217-251. ISSN 0169-2968. eISSN 1875-8681. Available under: doi: 10.3233/FI-2020-1922BibTex
@article{Caltais2020-03-31Causa-49236, year={2020}, doi={10.3233/FI-2020-1922}, title={Causal Reasoning for Safety in Hennessy Milner Logic}, number={2-3}, volume={173}, issn={0169-2968}, journal={Fundamenta Informaticae}, pages={217--251}, author={Caltais, Georgiana and Mousavi, Mohammad Reza and Singh, Hargurbir} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/49236"> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/49236"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49236/1/Caltais_2-1f0plxytk2gvf0.pdf"/> <dc:contributor>Mousavi, Mohammad Reza</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:issued>2020-03-31</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-04-21T09:11:02Z</dc:date> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49236/1/Caltais_2-1f0plxytk2gvf0.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Singh, Hargurbir</dc:contributor> <dc:creator>Caltais, Georgiana</dc:creator> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-04-21T09:11:02Z</dcterms:available> <dc:creator>Singh, Hargurbir</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Caltais, Georgiana</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Mousavi, Mohammad Reza</dc:creator> <dcterms:abstract xml:lang="eng">Determining and computing root causes in system failures is a significant issue in science and engineering. In this paper, we introduce a notion of causality for explaining counterexamples in system analysis based on formal models. The counter-examples are produced by checking for hazardous situations expressed in the Hennessy-Milner Logic, in the context of Labelled Transition System models. We also introduce CauseJMu, a tool for automatically identifying such causal computations within a system model. CauseJMu relies on encoding causality in terms of an extension of Hennessy-Milner Logic to recursive formulae with data. The encodings enable deciding whether a certain computation is causal or not, using the mCRL2 model checker.</dcterms:abstract> <dcterms:title>Causal Reasoning for Safety in Hennessy Milner Logic</dcterms:title> </rdf:Description> </rdf:RDF>