Publikation: Mesoporous SnO2 Nanoparticle-Based Electron Transport Layer for Perovskite Solar Cells
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
A perovskite solar cell (PSC) featuring a mesoporous architecture can facilitate perovskite layer formation over a large area via increasing the number of heterogeneous nucleation sites. The morphology of the electron transport layer (ETL) and its interface with the perovskite layer is one of the key factors to boost the performance of a PSC. Tin dioxide (SnO2) is considered as a promising ETL in PSCs owing to its high carrier mobility, good transmittance, deep conduction band level, and efficient photoelectron extraction. Generally, the mesoporous SnO2 (m-SnO2) ETL has a higher surface-to-volume ratio compared to a compact SnO2 layer. Herein, we report on an m-SnO2 ETL prepared by anodizing a metallic tin film on a fluorine-doped tin oxide (FTO) substrate in NaOH solution under an ambient atmosphere. In particular, we developed a bilayer architecture of the m-SnO2 ETL based on the fabrication of two consecutive m-SnO2 layers. The morphology of each layer was controlled by varying the anodization voltage and time at a constant solution concentration during the growth process. This unique approach enabled the deposition of an m-SnO2 ETL with sufficient coverage of the FTO substrate, which is difficult to achieve with a single layer of m-SnO2. In particular, the scanning electron and atomic force microscopy analyses confirmed that the m-SnO2 layer covers completely the FTO substrate. The device fabricated with this bilayer m-SnO2 ETL achieved a 27% improvement in power conversion efficiency compared to that with a single layer of m-SnO2.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ULLAH, Sami, Muhammad Faraz Ud DIN, Jafar KHAN KASI, Ajab KHAN KASI, Karol VEGSO, Mario KOTLAR, Matej MICUSIK, Matej JERGEL, Vojtech NADAZDY, Azhar FAKHARUDDIN, 2022. Mesoporous SnO2 Nanoparticle-Based Electron Transport Layer for Perovskite Solar Cells. In: ACS Applied Nano Materials. ACS Publications. 2022, 5(6), pp. 7822-7830. eISSN 2574-0970. Available under: doi: 10.1021/acsanm.2c00840BibTex
@article{Ullah2022Mesop-57972, year={2022}, doi={10.1021/acsanm.2c00840}, title={Mesoporous SnO<sub>2</sub> Nanoparticle-Based Electron Transport Layer for Perovskite Solar Cells}, number={6}, volume={5}, journal={ACS Applied Nano Materials}, pages={7822--7830}, author={Ullah, Sami and Din, Muhammad Faraz Ud and Khan Kasi, Jafar and Khan Kasi, Ajab and Vegso, Karol and Kotlar, Mario and Micusik, Matej and Jergel, Matej and Nadazdy, Vojtech and Fakharuddin, Azhar} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57972"> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57972"/> <dc:contributor>Vegso, Karol</dc:contributor> <dc:contributor>Ullah, Sami</dc:contributor> <dc:creator>Din, Muhammad Faraz Ud</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-07-08T08:35:12Z</dc:date> <dc:contributor>Kotlar, Mario</dc:contributor> <dc:creator>Vegso, Karol</dc:creator> <dc:contributor>Jergel, Matej</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Kotlar, Mario</dc:creator> <dcterms:title>Mesoporous SnO<sub>2</sub> Nanoparticle-Based Electron Transport Layer for Perovskite Solar Cells</dcterms:title> <dc:contributor>Din, Muhammad Faraz Ud</dc:contributor> <dc:contributor>Khan Kasi, Ajab</dc:contributor> <dc:language>eng</dc:language> <dc:creator>Nadazdy, Vojtech</dc:creator> <dc:creator>Ullah, Sami</dc:creator> <dc:creator>Khan Kasi, Ajab</dc:creator> <dc:creator>Micusik, Matej</dc:creator> <dc:contributor>Nadazdy, Vojtech</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-07-08T08:35:12Z</dcterms:available> <dc:creator>Khan Kasi, Jafar</dc:creator> <dc:creator>Jergel, Matej</dc:creator> <dcterms:abstract xml:lang="eng">A perovskite solar cell (PSC) featuring a mesoporous architecture can facilitate perovskite layer formation over a large area via increasing the number of heterogeneous nucleation sites. The morphology of the electron transport layer (ETL) and its interface with the perovskite layer is one of the key factors to boost the performance of a PSC. Tin dioxide (SnO<sub>2</sub>) is considered as a promising ETL in PSCs owing to its high carrier mobility, good transmittance, deep conduction band level, and efficient photoelectron extraction. Generally, the mesoporous SnO<sub>2</sub> (m-SnO<sub>2</sub>) ETL has a higher surface-to-volume ratio compared to a compact SnO2 layer. Herein, we report on an m-SnO<sub>2</sub> ETL prepared by anodizing a metallic tin film on a fluorine-doped tin oxide (FTO) substrate in NaOH solution under an ambient atmosphere. In particular, we developed a bilayer architecture of the m-SnO<sub>2</sub> ETL based on the fabrication of two consecutive m-SnO<sub>2</sub> layers. The morphology of each layer was controlled by varying the anodization voltage and time at a constant solution concentration during the growth process. This unique approach enabled the deposition of an m-SnO<sub>2</sub> ETL with sufficient coverage of the FTO substrate, which is difficult to achieve with a single layer of m-SnO<sub>2</sub>. In particular, the scanning electron and atomic force microscopy analyses confirmed that the m-SnO<sub>2</sub> layer covers completely the FTO substrate. The device fabricated with this bilayer m-SnO<sub>2</sub> ETL achieved a 27% improvement in power conversion efficiency compared to that with a single layer of m-SnO<sub>2</sub>.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:contributor>Micusik, Matej</dc:contributor> <dc:contributor>Khan Kasi, Jafar</dc:contributor> <dcterms:issued>2022</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Fakharuddin, Azhar</dc:creator> <dc:contributor>Fakharuddin, Azhar</dc:contributor> </rdf:Description> </rdf:RDF>