Publikation:

Mesoporous SnO2 Nanoparticle-Based Electron Transport Layer for Perovskite Solar Cells

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2022

Autor:innen

Ullah, Sami
Din, Muhammad Faraz Ud
Khan Kasi, Jafar
Khan Kasi, Ajab
Vegso, Karol
Kotlar, Mario
Micusik, Matej
Jergel, Matej
Nadazdy, Vojtech
et al.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

ACS Applied Nano Materials. ACS Publications. 2022, 5(6), pp. 7822-7830. eISSN 2574-0970. Available under: doi: 10.1021/acsanm.2c00840

Zusammenfassung

A perovskite solar cell (PSC) featuring a mesoporous architecture can facilitate perovskite layer formation over a large area via increasing the number of heterogeneous nucleation sites. The morphology of the electron transport layer (ETL) and its interface with the perovskite layer is one of the key factors to boost the performance of a PSC. Tin dioxide (SnO2) is considered as a promising ETL in PSCs owing to its high carrier mobility, good transmittance, deep conduction band level, and efficient photoelectron extraction. Generally, the mesoporous SnO2 (m-SnO2) ETL has a higher surface-to-volume ratio compared to a compact SnO2 layer. Herein, we report on an m-SnO2 ETL prepared by anodizing a metallic tin film on a fluorine-doped tin oxide (FTO) substrate in NaOH solution under an ambient atmosphere. In particular, we developed a bilayer architecture of the m-SnO2 ETL based on the fabrication of two consecutive m-SnO2 layers. The morphology of each layer was controlled by varying the anodization voltage and time at a constant solution concentration during the growth process. This unique approach enabled the deposition of an m-SnO2 ETL with sufficient coverage of the FTO substrate, which is difficult to achieve with a single layer of m-SnO2. In particular, the scanning electron and atomic force microscopy analyses confirmed that the m-SnO2 layer covers completely the FTO substrate. The device fabricated with this bilayer m-SnO2 ETL achieved a 27% improvement in power conversion efficiency compared to that with a single layer of m-SnO2.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

mesoporous tin dioxide, anodization, electron transport layer, perovskite solar cells, power conversion efficiency

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ULLAH, Sami, Muhammad Faraz Ud DIN, Jafar KHAN KASI, Ajab KHAN KASI, Karol VEGSO, Mario KOTLAR, Matej MICUSIK, Matej JERGEL, Vojtech NADAZDY, Azhar FAKHARUDDIN, 2022. Mesoporous SnO2 Nanoparticle-Based Electron Transport Layer for Perovskite Solar Cells. In: ACS Applied Nano Materials. ACS Publications. 2022, 5(6), pp. 7822-7830. eISSN 2574-0970. Available under: doi: 10.1021/acsanm.2c00840
BibTex
@article{Ullah2022Mesop-57972,
  year={2022},
  doi={10.1021/acsanm.2c00840},
  title={Mesoporous SnO<sub>2</sub> Nanoparticle-Based Electron Transport Layer for Perovskite Solar Cells},
  number={6},
  volume={5},
  journal={ACS Applied Nano Materials},
  pages={7822--7830},
  author={Ullah, Sami and Din, Muhammad Faraz Ud and Khan Kasi, Jafar and Khan Kasi, Ajab and Vegso, Karol and Kotlar, Mario and Micusik, Matej and Jergel, Matej and Nadazdy, Vojtech and Fakharuddin, Azhar}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57972">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57972"/>
    <dc:contributor>Vegso, Karol</dc:contributor>
    <dc:contributor>Ullah, Sami</dc:contributor>
    <dc:creator>Din, Muhammad Faraz Ud</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-07-08T08:35:12Z</dc:date>
    <dc:contributor>Kotlar, Mario</dc:contributor>
    <dc:creator>Vegso, Karol</dc:creator>
    <dc:contributor>Jergel, Matej</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Kotlar, Mario</dc:creator>
    <dcterms:title>Mesoporous SnO&lt;sub&gt;2&lt;/sub&gt; Nanoparticle-Based Electron Transport Layer for Perovskite Solar Cells</dcterms:title>
    <dc:contributor>Din, Muhammad Faraz Ud</dc:contributor>
    <dc:contributor>Khan Kasi, Ajab</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:creator>Nadazdy, Vojtech</dc:creator>
    <dc:creator>Ullah, Sami</dc:creator>
    <dc:creator>Khan Kasi, Ajab</dc:creator>
    <dc:creator>Micusik, Matej</dc:creator>
    <dc:contributor>Nadazdy, Vojtech</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-07-08T08:35:12Z</dcterms:available>
    <dc:creator>Khan Kasi, Jafar</dc:creator>
    <dc:creator>Jergel, Matej</dc:creator>
    <dcterms:abstract xml:lang="eng">A perovskite solar cell (PSC) featuring a mesoporous architecture can facilitate perovskite layer formation over a large area via increasing the number of heterogeneous nucleation sites. The morphology of the electron transport layer (ETL) and its interface with the perovskite layer is one of the key factors to boost the performance of a PSC. Tin dioxide (SnO&lt;sub&gt;2&lt;/sub&gt;) is considered as a promising ETL in PSCs owing to its high carrier mobility, good transmittance, deep conduction band level, and efficient photoelectron extraction. Generally, the mesoporous SnO&lt;sub&gt;2&lt;/sub&gt; (m-SnO&lt;sub&gt;2&lt;/sub&gt;) ETL has a higher surface-to-volume ratio compared to a compact SnO2 layer. Herein, we report on an m-SnO&lt;sub&gt;2&lt;/sub&gt; ETL prepared by anodizing a metallic tin film on a fluorine-doped tin oxide (FTO) substrate in NaOH solution under an ambient atmosphere. In particular, we developed a bilayer architecture of the m-SnO&lt;sub&gt;2&lt;/sub&gt; ETL based on the fabrication of two consecutive m-SnO&lt;sub&gt;2&lt;/sub&gt; layers. The morphology of each layer was controlled by varying the anodization voltage and time at a constant solution concentration during the growth process. This unique approach enabled the deposition of an m-SnO&lt;sub&gt;2&lt;/sub&gt; ETL with sufficient coverage of the FTO substrate, which is difficult to achieve with a single layer of m-SnO&lt;sub&gt;2&lt;/sub&gt;. In particular, the scanning electron and atomic force microscopy analyses confirmed that the m-SnO&lt;sub&gt;2&lt;/sub&gt; layer covers completely the FTO substrate. The device fabricated with this bilayer m-SnO&lt;sub&gt;2&lt;/sub&gt; ETL achieved a 27% improvement in power conversion efficiency compared to that with a single layer of m-SnO&lt;sub&gt;2&lt;/sub&gt;.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:contributor>Micusik, Matej</dc:contributor>
    <dc:contributor>Khan Kasi, Jafar</dc:contributor>
    <dcterms:issued>2022</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Fakharuddin, Azhar</dc:creator>
    <dc:contributor>Fakharuddin, Azhar</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen