Mesoporous SnO2 Nanoparticle-Based Electron Transport Layer for Perovskite Solar Cells

No Thumbnail Available
Files
There are no files associated with this item.
Date
2022
Authors
Ullah, Sami
Din, Muhammad Faraz Ud
Khan Kasi, Jafar
Khan Kasi, Ajab
Vegso, Karol
Kotlar, Mario
Micusik, Matej
Jergel, Matej
Nadazdy, Vojtech
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
oops
EU project number
Project
Open Access publication
Collections
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published
Published in
ACS Applied Nano Materials ; 5 (2022), 6. - pp. 7822-7830. - ACS Publications. - eISSN 2574-0970
Abstract
A perovskite solar cell (PSC) featuring a mesoporous architecture can facilitate perovskite layer formation over a large area via increasing the number of heterogeneous nucleation sites. The morphology of the electron transport layer (ETL) and its interface with the perovskite layer is one of the key factors to boost the performance of a PSC. Tin dioxide (SnO2) is considered as a promising ETL in PSCs owing to its high carrier mobility, good transmittance, deep conduction band level, and efficient photoelectron extraction. Generally, the mesoporous SnO2 (m-SnO2) ETL has a higher surface-to-volume ratio compared to a compact SnO2 layer. Herein, we report on an m-SnO2 ETL prepared by anodizing a metallic tin film on a fluorine-doped tin oxide (FTO) substrate in NaOH solution under an ambient atmosphere. In particular, we developed a bilayer architecture of the m-SnO2 ETL based on the fabrication of two consecutive m-SnO2 layers. The morphology of each layer was controlled by varying the anodization voltage and time at a constant solution concentration during the growth process. This unique approach enabled the deposition of an m-SnO2 ETL with sufficient coverage of the FTO substrate, which is difficult to achieve with a single layer of m-SnO2. In particular, the scanning electron and atomic force microscopy analyses confirmed that the m-SnO2 layer covers completely the FTO substrate. The device fabricated with this bilayer m-SnO2 ETL achieved a 27% improvement in power conversion efficiency compared to that with a single layer of m-SnO2.
Summary in another language
Subject (DDC)
530 Physics
Keywords
mesoporous tin dioxide, anodization, electron transport layer, perovskite solar cells, power conversion efficiency
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690ULLAH, Sami, Muhammad Faraz Ud DIN, Jafar KHAN KASI, Ajab KHAN KASI, Karol VEGSO, Mario KOTLAR, Matej MICUSIK, Matej JERGEL, Vojtech NADAZDY, Azhar FAKHARUDDIN, 2022. Mesoporous SnO2 Nanoparticle-Based Electron Transport Layer for Perovskite Solar Cells. In: ACS Applied Nano Materials. ACS Publications. 5(6), pp. 7822-7830. eISSN 2574-0970. Available under: doi: 10.1021/acsanm.2c00840
BibTex
@article{Ullah2022Mesop-57972,
  year={2022},
  doi={10.1021/acsanm.2c00840},
  title={Mesoporous SnO<sub>2</sub> Nanoparticle-Based Electron Transport Layer for Perovskite Solar Cells},
  number={6},
  volume={5},
  journal={ACS Applied Nano Materials},
  pages={7822--7830},
  author={Ullah, Sami and Din, Muhammad Faraz Ud and Khan Kasi, Jafar and Khan Kasi, Ajab and Vegso, Karol and Kotlar, Mario and Micusik, Matej and Jergel, Matej and Nadazdy, Vojtech and Fakharuddin, Azhar}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57972">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57972"/>
    <dc:contributor>Vegso, Karol</dc:contributor>
    <dc:contributor>Ullah, Sami</dc:contributor>
    <dc:creator>Din, Muhammad Faraz Ud</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-07-08T08:35:12Z</dc:date>
    <dc:contributor>Kotlar, Mario</dc:contributor>
    <dc:creator>Vegso, Karol</dc:creator>
    <dc:contributor>Jergel, Matej</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Kotlar, Mario</dc:creator>
    <dcterms:title>Mesoporous SnO&lt;sub&gt;2&lt;/sub&gt; Nanoparticle-Based Electron Transport Layer for Perovskite Solar Cells</dcterms:title>
    <dc:contributor>Din, Muhammad Faraz Ud</dc:contributor>
    <dc:contributor>Khan Kasi, Ajab</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:creator>Nadazdy, Vojtech</dc:creator>
    <dc:creator>Ullah, Sami</dc:creator>
    <dc:creator>Khan Kasi, Ajab</dc:creator>
    <dc:creator>Micusik, Matej</dc:creator>
    <dc:contributor>Nadazdy, Vojtech</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-07-08T08:35:12Z</dcterms:available>
    <dc:creator>Khan Kasi, Jafar</dc:creator>
    <dc:creator>Jergel, Matej</dc:creator>
    <dcterms:abstract xml:lang="eng">A perovskite solar cell (PSC) featuring a mesoporous architecture can facilitate perovskite layer formation over a large area via increasing the number of heterogeneous nucleation sites. The morphology of the electron transport layer (ETL) and its interface with the perovskite layer is one of the key factors to boost the performance of a PSC. Tin dioxide (SnO&lt;sub&gt;2&lt;/sub&gt;) is considered as a promising ETL in PSCs owing to its high carrier mobility, good transmittance, deep conduction band level, and efficient photoelectron extraction. Generally, the mesoporous SnO&lt;sub&gt;2&lt;/sub&gt; (m-SnO&lt;sub&gt;2&lt;/sub&gt;) ETL has a higher surface-to-volume ratio compared to a compact SnO2 layer. Herein, we report on an m-SnO&lt;sub&gt;2&lt;/sub&gt; ETL prepared by anodizing a metallic tin film on a fluorine-doped tin oxide (FTO) substrate in NaOH solution under an ambient atmosphere. In particular, we developed a bilayer architecture of the m-SnO&lt;sub&gt;2&lt;/sub&gt; ETL based on the fabrication of two consecutive m-SnO&lt;sub&gt;2&lt;/sub&gt; layers. The morphology of each layer was controlled by varying the anodization voltage and time at a constant solution concentration during the growth process. This unique approach enabled the deposition of an m-SnO&lt;sub&gt;2&lt;/sub&gt; ETL with sufficient coverage of the FTO substrate, which is difficult to achieve with a single layer of m-SnO&lt;sub&gt;2&lt;/sub&gt;. In particular, the scanning electron and atomic force microscopy analyses confirmed that the m-SnO&lt;sub&gt;2&lt;/sub&gt; layer covers completely the FTO substrate. The device fabricated with this bilayer m-SnO&lt;sub&gt;2&lt;/sub&gt; ETL achieved a 27% improvement in power conversion efficiency compared to that with a single layer of m-SnO&lt;sub&gt;2&lt;/sub&gt;.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:contributor>Micusik, Matej</dc:contributor>
    <dc:contributor>Khan Kasi, Jafar</dc:contributor>
    <dcterms:issued>2022</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Fakharuddin, Azhar</dc:creator>
    <dc:contributor>Fakharuddin, Azhar</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Unknown