Publikation:

Stable Attracting Sets in Delay Differential Equations and in Their Runge–Kutta Discretizations

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2008

Autor:innen

Kloeden, Peter E.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Numerical Functional Analysis and Optimization. 2008, 29(7-8), pp. 791-801. ISSN 0163-0563. eISSN 1532-2467. Available under: doi: 10.1080/01630560802279249

Zusammenfassung

We show that for sufficiently small step sizes, a Runge–Kutta discretization of an autonomous delay differential equation with a uniformly asymptotically stable compact attracting set of arbitrary shape possesses an attracting set located close to that of the original system.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Delay differential equations, Lyapunov functions, Runge–Kutta methods

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KLOEDEN, Peter E., Johannes SCHROPP, 2008. Stable Attracting Sets in Delay Differential Equations and in Their Runge–Kutta Discretizations. In: Numerical Functional Analysis and Optimization. 2008, 29(7-8), pp. 791-801. ISSN 0163-0563. eISSN 1532-2467. Available under: doi: 10.1080/01630560802279249
BibTex
@article{Kloeden2008-09-11Stabl-43198,
  year={2008},
  doi={10.1080/01630560802279249},
  title={Stable Attracting Sets in Delay Differential Equations and in Their Runge–Kutta Discretizations},
  number={7-8},
  volume={29},
  issn={0163-0563},
  journal={Numerical Functional Analysis and Optimization},
  pages={791--801},
  author={Kloeden, Peter E. and Schropp, Johannes}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43198">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-09-07T09:36:04Z</dc:date>
    <dcterms:title>Stable Attracting Sets in Delay Differential Equations and in Their Runge–Kutta Discretizations</dcterms:title>
    <dc:contributor>Schropp, Johannes</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dc:creator>Kloeden, Peter E.</dc:creator>
    <dcterms:issued>2008-09-11</dcterms:issued>
    <dc:creator>Schropp, Johannes</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-09-07T09:36:04Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43198"/>
    <dcterms:abstract xml:lang="eng">We show that for sufficiently small step sizes, a Runge–Kutta discretization of an autonomous delay differential equation with a uniformly asymptotically stable compact attracting set of arbitrary shape possesses an attracting set located close to that of the original system.</dcterms:abstract>
    <dc:contributor>Kloeden, Peter E.</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen