Publikation: Stable Attracting Sets in Delay Differential Equations and in Their Runge–Kutta Discretizations
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2008
Autor:innen
Kloeden, Peter E.
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Numerical Functional Analysis and Optimization. 2008, 29(7-8), pp. 791-801. ISSN 0163-0563. eISSN 1532-2467. Available under: doi: 10.1080/01630560802279249
Zusammenfassung
We show that for sufficiently small step sizes, a Runge–Kutta discretization of an autonomous delay differential equation with a uniformly asymptotically stable compact attracting set of arbitrary shape possesses an attracting set located close to that of the original system.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Delay differential equations, Lyapunov functions, Runge–Kutta methods
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
KLOEDEN, Peter E., Johannes SCHROPP, 2008. Stable Attracting Sets in Delay Differential Equations and in Their Runge–Kutta Discretizations. In: Numerical Functional Analysis and Optimization. 2008, 29(7-8), pp. 791-801. ISSN 0163-0563. eISSN 1532-2467. Available under: doi: 10.1080/01630560802279249BibTex
@article{Kloeden2008-09-11Stabl-43198, year={2008}, doi={10.1080/01630560802279249}, title={Stable Attracting Sets in Delay Differential Equations and in Their Runge–Kutta Discretizations}, number={7-8}, volume={29}, issn={0163-0563}, journal={Numerical Functional Analysis and Optimization}, pages={791--801}, author={Kloeden, Peter E. and Schropp, Johannes} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43198"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-09-07T09:36:04Z</dc:date> <dcterms:title>Stable Attracting Sets in Delay Differential Equations and in Their Runge–Kutta Discretizations</dcterms:title> <dc:contributor>Schropp, Johannes</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <dc:creator>Kloeden, Peter E.</dc:creator> <dcterms:issued>2008-09-11</dcterms:issued> <dc:creator>Schropp, Johannes</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-09-07T09:36:04Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43198"/> <dcterms:abstract xml:lang="eng">We show that for sufficiently small step sizes, a Runge–Kutta discretization of an autonomous delay differential equation with a uniformly asymptotically stable compact attracting set of arbitrary shape possesses an attracting set located close to that of the original system.</dcterms:abstract> <dc:contributor>Kloeden, Peter E.</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt