Publikation:

Assessing Data Quality in the Age of Digital Social Research : A Systematic Review

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2024

Autor:innen

Daikeler, Jessica
Fröhling, Leon
Birkenmaier, Lukas
Gummer, Tobias
Schwalbach, Jan
Silber, Henning
Weiß, Bernd
Weller, Katrin
Lechner, Clemens

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Social Science Computer Review. Sage. ISSN 0894-4393. eISSN 1552-8286. Available under: doi: 10.1177/08944393241245395

Zusammenfassung

While survey data has long been the focus of quantitative social science analyses, observational and content data, although long-established, are gaining renewed attention; especially when this type of data is obtained by and for observing digital content and behavior. Today, digital technologies allow social scientists to track “everyday behavior” and to extract opinions from public discussions on online platforms. These new types of digital traces of human behavior, together with computational methods for analyzing them, have opened new avenues for analyzing, understanding, and addressing social science research questions. However, even the most innovative and extensive amounts of data are hollow if they are not of high quality. But what does data quality mean for modern social science data? To investigate this rather abstract question the present study focuses on four objectives. First, we provide researchers with a decision tree to identify appropriate data quality frameworks for a given use case. Second, we determine which data types and quality dimensions are already addressed in the existing frameworks. Third, we identify gaps with respect to different data types and data quality dimensions within the existing frameworks which need to be filled. And fourth, we provide a detailed literature overview for the intrinsic and extrinsic perspectives on data quality. By conducting a systematic literature review based on text mining methods, we identified and reviewed 58 data quality frameworks. In our decision tree, the three categories, namely, data type, the perspective it takes, and its level of granularity, help researchers to find appropriate data quality frameworks. We, furthermore, discovered gaps in the available frameworks with respect to visual and especially linked data and point out in our review that even famous frameworks might miss important aspects. The article ends with a critical discussion of the current state of the literature and potential future research avenues.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
320 Politik

Schlagwörter

data quality, data quality concepts, data quality frameworks, measurement, representation, systematic review

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690DAIKELER, Jessica, Leon FRÖHLING, Indira SEN, Lukas BIRKENMAIER, Tobias GUMMER, Jan SCHWALBACH, Henning SILBER, Bernd WEISS, Katrin WELLER, Clemens LECHNER, 2024. Assessing Data Quality in the Age of Digital Social Research : A Systematic Review. In: Social Science Computer Review. Sage. ISSN 0894-4393. eISSN 1552-8286. Available under: doi: 10.1177/08944393241245395
BibTex
@article{Daikeler2024Asses-69956,
  year={2024},
  doi={10.1177/08944393241245395},
  title={Assessing Data Quality in the Age of Digital Social Research : A Systematic Review},
  issn={0894-4393},
  journal={Social Science Computer Review},
  author={Daikeler, Jessica and Fröhling, Leon and Sen, Indira and Birkenmaier, Lukas and Gummer, Tobias and Schwalbach, Jan and Silber, Henning and Weiß, Bernd and Weller, Katrin and Lechner, Clemens}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/69956">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-05-10T09:01:02Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:creator>Birkenmaier, Lukas</dc:creator>
    <dc:contributor>Schwalbach, Jan</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/69956"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Lechner, Clemens</dc:creator>
    <dc:creator>Daikeler, Jessica</dc:creator>
    <dc:contributor>Sen, Indira</dc:contributor>
    <dc:contributor>Birkenmaier, Lukas</dc:contributor>
    <dc:creator>Weller, Katrin</dc:creator>
    <dc:creator>Silber, Henning</dc:creator>
    <dc:creator>Fröhling, Leon</dc:creator>
    <dc:contributor>Silber, Henning</dc:contributor>
    <dc:creator>Schwalbach, Jan</dc:creator>
    <dc:contributor>Gummer, Tobias</dc:contributor>
    <dc:contributor>Daikeler, Jessica</dc:contributor>
    <dc:contributor>Weller, Katrin</dc:contributor>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:contributor>Fröhling, Leon</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-05-10T09:01:02Z</dc:date>
    <dc:contributor>Lechner, Clemens</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Weiß, Bernd</dc:creator>
    <dcterms:issued>2024</dcterms:issued>
    <dc:creator>Sen, Indira</dc:creator>
    <dcterms:abstract>While survey data has long been the focus of quantitative social science analyses, observational and content data, although long-established, are gaining renewed attention; especially when this type of data is obtained by and for observing digital content and behavior. Today, digital technologies allow social scientists to track “everyday behavior” and to extract opinions from public discussions on online platforms. These new types of digital traces of human behavior, together with computational methods for analyzing them, have opened new avenues for analyzing, understanding, and addressing social science research questions. However, even the most innovative and extensive amounts of data are hollow if they are not of high quality. But what does data quality mean for modern social science data? To investigate this rather abstract question the present study focuses on four objectives. First, we provide researchers with a decision tree to identify appropriate data quality frameworks for a given use case. Second, we determine which data types and quality dimensions are already addressed in the existing frameworks. Third, we identify gaps with respect to different data types and data quality dimensions within the existing frameworks which need to be filled. And fourth, we provide a detailed literature overview for the intrinsic and extrinsic perspectives on data quality. By conducting a systematic literature review based on text mining methods, we identified and reviewed 58 data quality frameworks. In our decision tree, the three categories, namely, data type, the perspective it takes, and its level of granularity, help researchers to find appropriate data quality frameworks. We, furthermore, discovered gaps in the available frameworks with respect to visual and especially linked data and point out in our review that even famous frameworks might miss important aspects. The article ends with a critical discussion of the current state of the literature and potential future research avenues.</dcterms:abstract>
    <dc:creator>Gummer, Tobias</dc:creator>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:title>Assessing Data Quality in the Age of Digital Social Research : A Systematic Review</dcterms:title>
    <dc:contributor>Weiß, Bernd</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Online First: Zeitschriftenartikel, die schon vor ihrer Zuordnung zu einem bestimmten Zeitschriftenheft (= Issue) online gestellt werden. Online First-Artikel werden auf der Homepage des Journals in der Verlagsfassung veröffentlicht.
Diese Publikation teilen