Publikation: Uncovering novel mutational signatures by de novo extraction with SigProfilerExtractor
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Mutational signature analysis is commonly performed in cancer genomic studies. Here, we present SigProfilerExtractor, an automated tool for de novo extraction of mutational signatures, and benchmark it against another 13 bioinformatics tools by using 34 scenarios encompassing 2,500 simulated signatures found in 60,000 synthetic genomes and 20,000 synthetic exomes. For simulations with 5% noise, reflecting high-quality datasets, SigProfilerExtractor outperforms other approaches by elucidating between 20% and 50% more true-positive signatures while yielding 5-fold less false-positive signatures. Applying SigProfilerExtractor to 4,643 whole-genome- and 19,184 whole-exome-sequenced cancers reveals four novel signatures. Two of the signatures are confirmed in independent cohorts, and one of these signatures is associated with tobacco smoking. In summary, this report provides a reference tool for analysis of mutational signatures, a comprehensive benchmarking of bioinformatics tools for extracting signatures, and several novel mutational signatures, including one putatively attributed to direct tobacco smoking mutagenesis in bladder tissues.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ISLAM, S.M. Ashiqul, Marcos DÍAZ-GAY, Yang WU, Mark BARNES, Raviteja VANGARA, Erik N. BERGSTROM, Yudou HE, Mike VELLA, Andreas J. GRUBER, Ludmil B. ALEXANDROV, 2022. Uncovering novel mutational signatures by de novo extraction with SigProfilerExtractor. In: Cell Genomics. Elsevier. 2022, 2(11), 100179. eISSN 2666-979X. Available under: doi: 10.1016/j.xgen.2022.100179BibTex
@article{Islam2022Uncov-66400, year={2022}, doi={10.1016/j.xgen.2022.100179}, title={Uncovering novel mutational signatures by de novo extraction with SigProfilerExtractor}, number={11}, volume={2}, journal={Cell Genomics}, author={Islam, S.M. Ashiqul and Díaz-Gay, Marcos and Wu, Yang and Barnes, Mark and Vangara, Raviteja and Bergstrom, Erik N. and He, Yudou and Vella, Mike and Gruber, Andreas J. and Alexandrov, Ludmil B.}, note={Article Number: 100179} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/66400"> <dc:creator>Islam, S.M. Ashiqul</dc:creator> <dc:contributor>Barnes, Mark</dc:contributor> <dc:creator>Vella, Mike</dc:creator> <dc:creator>Díaz-Gay, Marcos</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66400/4/Islam_2-1dbw5dkpf7ikh0.pdf"/> <dc:contributor>He, Yudou</dc:contributor> <dc:creator>Alexandrov, Ludmil B.</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Alexandrov, Ludmil B.</dc:contributor> <dc:contributor>Vangara, Raviteja</dc:contributor> <dc:contributor>Vella, Mike</dc:contributor> <dc:creator>Gruber, Andreas J.</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-03-14T08:02:38Z</dcterms:available> <dc:contributor>Díaz-Gay, Marcos</dc:contributor> <dcterms:issued>2022</dcterms:issued> <dcterms:abstract>Mutational signature analysis is commonly performed in cancer genomic studies. Here, we present SigProfilerExtractor, an automated tool for de novo extraction of mutational signatures, and benchmark it against another 13 bioinformatics tools by using 34 scenarios encompassing 2,500 simulated signatures found in 60,000 synthetic genomes and 20,000 synthetic exomes. For simulations with 5% noise, reflecting high-quality datasets, SigProfilerExtractor outperforms other approaches by elucidating between 20% and 50% more true-positive signatures while yielding 5-fold less false-positive signatures. Applying SigProfilerExtractor to 4,643 whole-genome- and 19,184 whole-exome-sequenced cancers reveals four novel signatures. Two of the signatures are confirmed in independent cohorts, and one of these signatures is associated with tobacco smoking. In summary, this report provides a reference tool for analysis of mutational signatures, a comprehensive benchmarking of bioinformatics tools for extracting signatures, and several novel mutational signatures, including one putatively attributed to direct tobacco smoking mutagenesis in bladder tissues.</dcterms:abstract> <dc:creator>He, Yudou</dc:creator> <dc:contributor>Bergstrom, Erik N.</dc:contributor> <dc:creator>Wu, Yang</dc:creator> <dc:creator>Barnes, Mark</dc:creator> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:contributor>Wu, Yang</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/66400"/> <dcterms:title>Uncovering novel mutational signatures by de novo extraction with SigProfilerExtractor</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-03-14T08:02:38Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:contributor>Islam, S.M. Ashiqul</dc:contributor> <dc:creator>Bergstrom, Erik N.</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66400/4/Islam_2-1dbw5dkpf7ikh0.pdf"/> <dc:creator>Vangara, Raviteja</dc:creator> <dc:contributor>Gruber, Andreas J.</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:rights>Attribution 4.0 International</dc:rights> </rdf:Description> </rdf:RDF>