Publikation: Hierarchy-driven Exploration of Multidimensional Data Cubes
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Analysts interact with OLAP data in a predominantly drill-down fashion, i.e. gradually descending from a coarsely grained overview towards the desired level of detail. Analysis tools enable visual exploration as a sequence of navigation steps in the data cubes and their dimensional hierarchies. However, most state-of-the-art solutions are limited either in their capacity to handle complex multidimensional data or in the ability of their visual metaphors to provide an overview+details context. This work proposes an explorative framework for OLAP data based on a simple but powerful approach to analyzing data cubes of virtually arbitrary complexity. The data is queried using an intuitive navigation in which each dimension is represented by its hierarchy schema. Any granularity level can be dragged into the visualization to serve as an disaggregation axis. The results of the iterative exploration are mapped to a specified visualization technique. We favor hierarchical layouts for their natural ability to show step-wise decomposition of aggregate values. The power of the tool to support various application scenarios is demonstrated by presenting use cases from different domains and the visualization techniques suitable for solving specific analysis tasks.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
MANSMANN, Svetlana, Florian MANSMANN, Marc H. SCHOLL, Daniel A. KEIM, 2007. Hierarchy-driven Exploration of Multidimensional Data Cubes. 12. GI-Fachtagung für Datenbanksysteme in Business, Technologie und Web (BTW 2007). Aachen, Germany, 2007. In: 12. GI-Fachtagung für Datenbanksysteme in Business, Technologie und Web (BTW 2007), Aachen, Germany, 2007. 2007BibTex
@inproceedings{Mansmann2007Hiera-5648, year={2007}, title={Hierarchy-driven Exploration of Multidimensional Data Cubes}, booktitle={12. GI-Fachtagung für Datenbanksysteme in Business, Technologie und Web (BTW 2007), Aachen, Germany, 2007}, author={Mansmann, Svetlana and Mansmann, Florian and Scholl, Marc H. and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5648"> <dc:creator>Mansmann, Svetlana</dc:creator> <dc:creator>Keim, Daniel A.</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:format>application/pdf</dc:format> <dcterms:title>Hierarchy-driven Exploration of Multidimensional Data Cubes</dcterms:title> <dcterms:bibliographicCitation>First publ. in: 12. GI-Fachtagung für Datenbanksysteme in Business, Technologie und Web (BTW 2007), Aachen, Germany, 2007</dcterms:bibliographicCitation> <dcterms:issued>2007</dcterms:issued> <dc:contributor>Scholl, Marc H.</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Mansmann, Florian</dc:contributor> <dc:creator>Scholl, Marc H.</dc:creator> <dc:contributor>Mansmann, Svetlana</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:57:29Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5648/1/MMSK_BTW2007.pdf"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5648"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:57:29Z</dcterms:available> <dcterms:abstract xml:lang="eng">Analysts interact with OLAP data in a predominantly drill-down fashion, i.e. gradually descending from a coarsely grained overview towards the desired level of detail. Analysis tools enable visual exploration as a sequence of navigation steps in the data cubes and their dimensional hierarchies. However, most state-of-the-art solutions are limited either in their capacity to handle complex multidimensional data or in the ability of their visual metaphors to provide an overview+details context. This work proposes an explorative framework for OLAP data based on a simple but powerful approach to analyzing data cubes of virtually arbitrary complexity. The data is queried using an intuitive navigation in which each dimension is represented by its hierarchy schema. Any granularity level can be dragged into the visualization to serve as an disaggregation axis. The results of the iterative exploration are mapped to a specified visualization technique. We favor hierarchical layouts for their natural ability to show step-wise decomposition of aggregate values. The power of the tool to support various application scenarios is demonstrated by presenting use cases from different domains and the visualization techniques suitable for solving specific analysis tasks.</dcterms:abstract> <dc:creator>Mansmann, Florian</dc:creator> <dc:language>eng</dc:language> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5648/1/MMSK_BTW2007.pdf"/> </rdf:Description> </rdf:RDF>