Publikation:

Hierarchy-driven Exploration of Multidimensional Data Cubes

Lade...
Vorschaubild

Dateien

MMSK_BTW2007.pdf
MMSK_BTW2007.pdfGröße: 627.9 KBDownloads: 472

Datum

2007

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

12. GI-Fachtagung für Datenbanksysteme in Business, Technologie und Web (BTW 2007), Aachen, Germany, 2007. 2007

Zusammenfassung

Analysts interact with OLAP data in a predominantly drill-down fashion, i.e. gradually descending from a coarsely grained overview towards the desired level of detail. Analysis tools enable visual exploration as a sequence of navigation steps in the data cubes and their dimensional hierarchies. However, most state-of-the-art solutions are limited either in their capacity to handle complex multidimensional data or in the ability of their visual metaphors to provide an overview+details context. This work proposes an explorative framework for OLAP data based on a simple but powerful approach to analyzing data cubes of virtually arbitrary complexity. The data is queried using an intuitive navigation in which each dimension is represented by its hierarchy schema. Any granularity level can be dragged into the visualization to serve as an disaggregation axis. The results of the iterative exploration are mapped to a specified visualization technique. We favor hierarchical layouts for their natural ability to show step-wise decomposition of aggregate values. The power of the tool to support various application scenarios is demonstrated by presenting use cases from different domains and the visualization techniques suitable for solving specific analysis tasks.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

12. GI-Fachtagung für Datenbanksysteme in Business, Technologie und Web (BTW 2007), 2007, Aachen, Germany
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690MANSMANN, Svetlana, Florian MANSMANN, Marc H. SCHOLL, Daniel A. KEIM, 2007. Hierarchy-driven Exploration of Multidimensional Data Cubes. 12. GI-Fachtagung für Datenbanksysteme in Business, Technologie und Web (BTW 2007). Aachen, Germany, 2007. In: 12. GI-Fachtagung für Datenbanksysteme in Business, Technologie und Web (BTW 2007), Aachen, Germany, 2007. 2007
BibTex
@inproceedings{Mansmann2007Hiera-5648,
  year={2007},
  title={Hierarchy-driven Exploration of Multidimensional Data Cubes},
  booktitle={12. GI-Fachtagung für Datenbanksysteme in Business, Technologie und Web (BTW 2007), Aachen, Germany, 2007},
  author={Mansmann, Svetlana and Mansmann, Florian and Scholl, Marc H. and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5648">
    <dc:creator>Mansmann, Svetlana</dc:creator>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:format>application/pdf</dc:format>
    <dcterms:title>Hierarchy-driven Exploration of Multidimensional Data Cubes</dcterms:title>
    <dcterms:bibliographicCitation>First publ. in: 12. GI-Fachtagung für Datenbanksysteme in Business, Technologie und Web (BTW 2007), Aachen, Germany, 2007</dcterms:bibliographicCitation>
    <dcterms:issued>2007</dcterms:issued>
    <dc:contributor>Scholl, Marc H.</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Mansmann, Florian</dc:contributor>
    <dc:creator>Scholl, Marc H.</dc:creator>
    <dc:contributor>Mansmann, Svetlana</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:57:29Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5648/1/MMSK_BTW2007.pdf"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5648"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:57:29Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">Analysts interact with OLAP data in a predominantly  drill-down  fashion, i.e. gradually descending from a coarsely grained overview towards the desired level of detail. Analysis tools enable visual exploration as a sequence of navigation steps in the data cubes and their dimensional hierarchies. However, most state-of-the-art solutions are limited either in their capacity to handle complex multidimensional data or in the ability of their visual metaphors to provide an overview+details context. This work proposes an explorative framework for OLAP data based on a simple but powerful approach to analyzing data cubes of virtually arbitrary complexity. The data is queried using an intuitive navigation in which each dimension is represented by its hierarchy schema. Any granularity level can be dragged into the visualization to serve as an disaggregation axis. The results of the iterative exploration are mapped to a specified visualization technique. We favor hierarchical layouts for their natural ability to show step-wise decomposition of aggregate values. The power of the tool to support various application scenarios is demonstrated by presenting use cases from different domains and the visualization techniques suitable for solving specific analysis tasks.</dcterms:abstract>
    <dc:creator>Mansmann, Florian</dc:creator>
    <dc:language>eng</dc:language>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5648/1/MMSK_BTW2007.pdf"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen