Publikation: Large-scale Comparative Sentiment Analysis of News Articles
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Online media offers great possibilities to retrieve more news items than ever. In contrast to these technical developments, human capabilities to read all these news items have not increased likewise. To bridge this gap, this poster presents a visual analytics tool for conducting semi-automatic sentiment analysis of large news feeds. The tool retrieves and analyzes the news of two categories (Terrorist Attack and Natural Disasters) and news which belong to both categories of the Europe Media Monitor (EMM) with respect to positive and negative opinion words. While this happens automatically, the more demanding news analysis of finding trends, spotting peculiarities and putting events into context is left to the human expert.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WANNER, Franz, Christian ROHRDANTZ, Florian MANSMANN, Andreas STOFFEL, Daniela OELKE, Milos KRSTAJIC, Daniel A. KEIM, Dongning LUO, Jing YANG, Martin ATKINSON, 2009. Large-scale Comparative Sentiment Analysis of News Articles. InfoVis. Atlantic City, New Jersey, 11. Okt. 2009 - 16. Okt. 2009. In: IEEE Information Visualization Conference : InfoVis 2009. - Atlantic City, New Jersey, October 11 - 16, 2009. 2009BibTex
@inproceedings{Wanner2009Large-16517, year={2009}, title={Large-scale Comparative Sentiment Analysis of News Articles}, booktitle={IEEE Information Visualization Conference : InfoVis 2009. - Atlantic City, New Jersey, October 11 - 16, 2009}, author={Wanner, Franz and Rohrdantz, Christian and Mansmann, Florian and Stoffel, Andreas and Oelke, Daniela and Krstajic, Milos and Keim, Daniel A. and Luo, Dongning and Yang, Jing and Atkinson, Martin} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/16517"> <dc:contributor>Atkinson, Martin</dc:contributor> <dc:creator>Luo, Dongning</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-10-27T14:31:43Z</dc:date> <dc:contributor>Luo, Dongning</dc:contributor> <dc:creator>Rohrdantz, Christian</dc:creator> <dc:contributor>Mansmann, Florian</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Stoffel, Andreas</dc:creator> <dcterms:bibliographicCitation>Poster presented at: IEEE Information Visualization Conference : InfoVis 2009. - Atlantic City, New Jersey, October 11 - 16, 2009</dcterms:bibliographicCitation> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/16517/1/Mansmann%20et%20al.pdf"/> <dc:contributor>Wanner, Franz</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/16517"/> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/16517/1/Mansmann%20et%20al.pdf"/> <dc:creator>Atkinson, Martin</dc:creator> <dc:contributor>Krstajic, Milos</dc:contributor> <dc:contributor>Stoffel, Andreas</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-10-27T14:31:43Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:rights>terms-of-use</dc:rights> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Wanner, Franz</dc:creator> <dc:creator>Oelke, Daniela</dc:creator> <dcterms:issued>2009</dcterms:issued> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">Online media offers great possibilities to retrieve more news items than ever. In contrast to these technical developments, human capabilities to read all these news items have not increased likewise. To bridge this gap, this poster presents a visual analytics tool for conducting semi-automatic sentiment analysis of large news feeds. The tool retrieves and analyzes the news of two categories (Terrorist Attack and Natural Disasters) and news which belong to both categories of the Europe Media Monitor (EMM) with respect to positive and negative opinion words. While this happens automatically, the more demanding news analysis of finding trends, spotting peculiarities and putting events into context is left to the human expert.</dcterms:abstract> <dcterms:title>Large-scale Comparative Sentiment Analysis of News Articles</dcterms:title> <dc:contributor>Yang, Jing</dc:contributor> <dc:contributor>Oelke, Daniela</dc:contributor> <dc:creator>Mansmann, Florian</dc:creator> <dc:contributor>Rohrdantz, Christian</dc:contributor> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:creator>Yang, Jing</dc:creator> <dc:creator>Krstajic, Milos</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>