Publikation:

Large-scale Comparative Sentiment Analysis of News Articles

Lade...
Vorschaubild

Dateien

Mansmann et al.pdf
Mansmann et al.pdfGröße: 608.39 KBDownloads: 570

Datum

2009

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

IEEE Information Visualization Conference : InfoVis 2009. - Atlantic City, New Jersey, October 11 - 16, 2009. 2009

Zusammenfassung

Online media offers great possibilities to retrieve more news items than ever. In contrast to these technical developments, human capabilities to read all these news items have not increased likewise. To bridge this gap, this poster presents a visual analytics tool for conducting semi-automatic sentiment analysis of large news feeds. The tool retrieves and analyzes the news of two categories (Terrorist Attack and Natural Disasters) and news which belong to both categories of the Europe Media Monitor (EMM) with respect to positive and negative opinion words. While this happens automatically, the more demanding news analysis of finding trends, spotting peculiarities and putting events into context is left to the human expert.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

InfoVis, 11. Okt. 2009 - 16. Okt. 2009, Atlantic City, New Jersey
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690WANNER, Franz, Christian ROHRDANTZ, Florian MANSMANN, Andreas STOFFEL, Daniela OELKE, Milos KRSTAJIC, Daniel A. KEIM, Dongning LUO, Jing YANG, Martin ATKINSON, 2009. Large-scale Comparative Sentiment Analysis of News Articles. InfoVis. Atlantic City, New Jersey, 11. Okt. 2009 - 16. Okt. 2009. In: IEEE Information Visualization Conference : InfoVis 2009. - Atlantic City, New Jersey, October 11 - 16, 2009. 2009
BibTex
@inproceedings{Wanner2009Large-16517,
  year={2009},
  title={Large-scale Comparative Sentiment Analysis of News Articles},
  booktitle={IEEE Information Visualization Conference : InfoVis 2009. - Atlantic City, New Jersey, October 11 - 16, 2009},
  author={Wanner, Franz and Rohrdantz, Christian and Mansmann, Florian and Stoffel, Andreas and Oelke, Daniela and Krstajic, Milos and Keim, Daniel A. and Luo, Dongning and Yang, Jing and Atkinson, Martin}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/16517">
    <dc:contributor>Atkinson, Martin</dc:contributor>
    <dc:creator>Luo, Dongning</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-10-27T14:31:43Z</dc:date>
    <dc:contributor>Luo, Dongning</dc:contributor>
    <dc:creator>Rohrdantz, Christian</dc:creator>
    <dc:contributor>Mansmann, Florian</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Stoffel, Andreas</dc:creator>
    <dcterms:bibliographicCitation>Poster presented at: IEEE Information Visualization Conference : InfoVis 2009. - Atlantic City, New Jersey, October 11 - 16, 2009</dcterms:bibliographicCitation>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/16517/1/Mansmann%20et%20al.pdf"/>
    <dc:contributor>Wanner, Franz</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/16517"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/16517/1/Mansmann%20et%20al.pdf"/>
    <dc:creator>Atkinson, Martin</dc:creator>
    <dc:contributor>Krstajic, Milos</dc:contributor>
    <dc:contributor>Stoffel, Andreas</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-10-27T14:31:43Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Wanner, Franz</dc:creator>
    <dc:creator>Oelke, Daniela</dc:creator>
    <dcterms:issued>2009</dcterms:issued>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">Online media offers great possibilities to retrieve more news items than ever. In contrast to these technical developments, human capabilities to read all these news items have not increased likewise. To bridge this gap, this poster presents a visual analytics tool for conducting semi-automatic sentiment analysis of large news feeds. The tool retrieves and analyzes the news of two categories (Terrorist Attack and Natural Disasters) and news which belong to both categories of the Europe Media Monitor (EMM) with respect to positive and negative opinion words. While this happens automatically, the more demanding news analysis of finding trends, spotting peculiarities and putting events into context is left to the human expert.</dcterms:abstract>
    <dcterms:title>Large-scale Comparative Sentiment Analysis of News Articles</dcterms:title>
    <dc:contributor>Yang, Jing</dc:contributor>
    <dc:contributor>Oelke, Daniela</dc:contributor>
    <dc:creator>Mansmann, Florian</dc:creator>
    <dc:contributor>Rohrdantz, Christian</dc:contributor>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:creator>Yang, Jing</dc:creator>
    <dc:creator>Krstajic, Milos</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen