Publikation:

The algebraic degree of coupled oscillators

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2025

Autor:innen

Breiding, Paul
Monin, Leonid
Telen, Simon

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Deutsche Forschungsgemeinschaft (DFG): 445466444
Deutsche Forschungsgemeinschaft (DFG): 67575307
Deutsche Forschungsgemeinschaft (DFG): VI.Veni.212.054

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Advances in Mathematics. Elsevier. 2025, 480(Part B), 110492. ISSN 0001-8708. eISSN 1090-2082. Verfügbar unter: doi: 10.1016/j.aim.2025.110492

Zusammenfassung

Approximating periodic solutions to the coupled Duffing equations amounts to solving a system of polynomial equations. The number of complex solutions measures the algebraic complexity of this approximation problem. Using the theory of Khovanskii bases, we show that this number is given by the volume of a polytope. We also show how to compute all solutions using numerical nonlinear algebra.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Khovanskii bases, Graver bases, Toric ideals, Discriminants, Homotopy continuation

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BREIDING, Paul, Mateusz MICHALEK, Leonid MONIN, Simon TELEN, 2025. The algebraic degree of coupled oscillators. In: Advances in Mathematics. Elsevier. 2025, 480(Part B), 110492. ISSN 0001-8708. eISSN 1090-2082. Verfügbar unter: doi: 10.1016/j.aim.2025.110492
BibTex
@article{Breiding2025-11algeb-74993,
  title={The algebraic degree of coupled oscillators},
  year={2025},
  doi={10.1016/j.aim.2025.110492},
  number={Part B},
  volume={480},
  issn={0001-8708},
  journal={Advances in Mathematics},
  author={Breiding, Paul and Michalek, Mateusz and Monin, Leonid and Telen, Simon},
  note={Article Number: 110492}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/74993">
    <dc:creator>Monin, Leonid</dc:creator>
    <dc:contributor>Breiding, Paul</dc:contributor>
    <dc:creator>Breiding, Paul</dc:creator>
    <dc:contributor>Telen, Simon</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:contributor>Monin, Leonid</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:abstract>Approximating periodic solutions to the coupled Duffing equations amounts to solving a system of polynomial equations. The number of complex solutions measures the algebraic complexity of this approximation problem. Using the theory of Khovanskii bases, we show that this number is given by the volume of a polytope. We also show how to compute all solutions using numerical nonlinear algebra.</dcterms:abstract>
    <dcterms:issued>2025-11</dcterms:issued>
    <dc:creator>Michalek, Mateusz</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/74993"/>
    <dc:creator>Telen, Simon</dc:creator>
    <dcterms:title>The algebraic degree of coupled oscillators</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-10-28T09:41:25Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Michalek, Mateusz</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-10-28T09:41:25Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen