Publikation: The algebraic degree of coupled oscillators
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2025
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Deutsche Forschungsgemeinschaft (DFG): 445466444
Deutsche Forschungsgemeinschaft (DFG): 67575307
Deutsche Forschungsgemeinschaft (DFG): VI.Veni.212.054
Deutsche Forschungsgemeinschaft (DFG): 67575307
Deutsche Forschungsgemeinschaft (DFG): VI.Veni.212.054
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Advances in Mathematics. Elsevier. 2025, 480(Part B), 110492. ISSN 0001-8708. eISSN 1090-2082. Verfügbar unter: doi: 10.1016/j.aim.2025.110492
Zusammenfassung
Approximating periodic solutions to the coupled Duffing equations amounts to solving a system of polynomial equations. The number of complex solutions measures the algebraic complexity of this approximation problem. Using the theory of Khovanskii bases, we show that this number is given by the volume of a polytope. We also show how to compute all solutions using numerical nonlinear algebra.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Khovanskii bases, Graver bases, Toric ideals, Discriminants, Homotopy continuation
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
BREIDING, Paul, Mateusz MICHALEK, Leonid MONIN, Simon TELEN, 2025. The algebraic degree of coupled oscillators. In: Advances in Mathematics. Elsevier. 2025, 480(Part B), 110492. ISSN 0001-8708. eISSN 1090-2082. Verfügbar unter: doi: 10.1016/j.aim.2025.110492BibTex
@article{Breiding2025-11algeb-74993,
title={The algebraic degree of coupled oscillators},
year={2025},
doi={10.1016/j.aim.2025.110492},
number={Part B},
volume={480},
issn={0001-8708},
journal={Advances in Mathematics},
author={Breiding, Paul and Michalek, Mateusz and Monin, Leonid and Telen, Simon},
note={Article Number: 110492}
}RDF
<rdf:RDF
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:bibo="http://purl.org/ontology/bibo/"
xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:void="http://rdfs.org/ns/void#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >
<rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/74993">
<dc:creator>Monin, Leonid</dc:creator>
<dc:contributor>Breiding, Paul</dc:contributor>
<dc:creator>Breiding, Paul</dc:creator>
<dc:contributor>Telen, Simon</dc:contributor>
<dc:language>eng</dc:language>
<dc:contributor>Monin, Leonid</dc:contributor>
<dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
<dcterms:abstract>Approximating periodic solutions to the coupled Duffing equations amounts to solving a system of polynomial equations. The number of complex solutions measures the algebraic complexity of this approximation problem. Using the theory of Khovanskii bases, we show that this number is given by the volume of a polytope. We also show how to compute all solutions using numerical nonlinear algebra.</dcterms:abstract>
<dcterms:issued>2025-11</dcterms:issued>
<dc:creator>Michalek, Mateusz</dc:creator>
<void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
<bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/74993"/>
<dc:creator>Telen, Simon</dc:creator>
<dcterms:title>The algebraic degree of coupled oscillators</dcterms:title>
<dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-10-28T09:41:25Z</dcterms:available>
<dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
<dc:contributor>Michalek, Mateusz</dc:contributor>
<dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-10-28T09:41:25Z</dc:date>
<foaf:homepage rdf:resource="http://localhost:8080/"/>
</rdf:Description>
</rdf:RDF>Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja