On the stability of damped Timoshenko systems - Cattaneo versus Fourier law

dc.contributor.authorFernández Sare, Hugo D.deu
dc.contributor.authorRacke, Reinharddeu
dc.date.accessioned2011-03-22T17:45:06Zdeu
dc.date.available2011-03-22T17:45:06Zdeu
dc.date.issued2007deu
dc.description.abstractWe consider vibrating systems of hyperbolic Timoshenko type that are coupled to a heat equation modeling an expectedly dissipative effect through heat conduction. While proving exponential stability under the Fourier law of heat conduction, it turns out that the coupling via the Cattaneo law does not yield an exponentially stable system. This seems to be the first example that a removal of the paradox of infinite propagation speed inherent in Fourier's law by changing to the Cattaneo law distroys the exponential stability property. Actually, for systems with history, the Fourier law keeps the exponential stability known for the pure Timoshenko system without heat conduction, but introducing the Cattaneo coupling even destroys this property.eng
dc.format.mimetypeapplication/pdfdeu
dc.identifier.ppn262985241deu
dc.identifier.urihttp://kops.uni-konstanz.de/handle/123456789/574
dc.language.isoengdeu
dc.legacy.dateIssued2007deu
dc.relation.ispartofseriesKonstanzer Schriften in Mathematik und Informatikdeu
dc.rightsterms-of-usedeu
dc.rights.urihttps://rightsstatements.org/page/InC/1.0/deu
dc.subject.ddc510deu
dc.subject.gndExponentielle Stabilitätdeu
dc.subject.msc35B40deu
dc.subject.msc74H40deu
dc.titleOn the stability of damped Timoshenko systems - Cattaneo versus Fourier laweng
dc.typeWORKINGPAPERdeu
dspace.entity.typePublication
kops.bibliographicInfo.seriesNumber227deu
kops.description.openAccessopenaccessgreen
kops.flag.knbibliographytrue
kops.identifier.nbnurn:nbn:de:bsz:352-opus-24085deu
kops.opus.id2408deu
temp.submission.doi
temp.submission.source

Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
preprint_227.pdf
Größe:
464.87 KB
Format:
Adobe Portable Document Format
preprint_227.pdf
preprint_227.pdfGröße: 464.87 KBDownloads: 702

Versionsgeschichte

Gerade angezeigt 1 - 2 von 2
VersionDatumZusammenfassung
2022-07-11 11:18:56
1*
2011-03-22 17:45:06
* Ausgewählte Version