Publikation:

Exploiting Phase Transitions for the Efficient Sampling of the Fixed Degree Sequence Model

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2015

Autor:innen

Brugger, Christian
Chinazzo, André Lucas
John, Alexandre Flores
De Schryver, Christian
Wehn, Norbert
Zweig, Katharina Anna

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

PEI, Jian, ed., Fabrizio SILVESTRI, ed., Jie TANG, ed.. ASONAM '15 : Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015. New York: ACM, 2015, pp. 308-313. ISBN 978-1-4503-3854-7. Available under: doi: 10.1145/2808797.2809388

Zusammenfassung

Real-world network data is often very noisy and contains erroneous or missing edges. These superfluous and missing edges can be identified statistically by assessing the number of common neighbors of the two incident nodes. To evaluate whether this number of common neighbors, the so called co-occurrence, is statistically significant, a comparison with the expected co-occurrence in a suitable random graph model is required. For networks with a skewed degree distribution, including most real-world networks, it is known that the fixed degree sequence model, which maintains the degrees of nodes, is favourable over using simplified graph models that are based on an independence assumption. However, the use of a fixed degree sequence model requires sampling from the space of all graphs with the given degree sequence and measuring the co-occurrence of each pair of nodes in each of the samples, since there is no known closed formula for this statistic. While there exist log-linear approaches such as Markov chain Monte Carlo sampling, the computational complexity still depends on the length of the Markov chain and the number of samples, which is significant in large-scale networks. In this article, we show based on ground truth data that there are various phase transition-like tipping points that enable us to choose a comparatively low number of samples and to reduce the length of the Markov chains without reducing the quality of the significance test. As a result, the computational effort can be reduced by an order of magnitudes.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, 25. Aug. 2015 - 28. Aug. 2015, Paris, France
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BRUGGER, Christian, André Lucas CHINAZZO, Alexandre Flores JOHN, Christian DE SCHRYVER, Norbert WEHN, Andreas SPITZ, Katharina Anna ZWEIG, 2015. Exploiting Phase Transitions for the Efficient Sampling of the Fixed Degree Sequence Model. 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. Paris, France, 25. Aug. 2015 - 28. Aug. 2015. In: PEI, Jian, ed., Fabrizio SILVESTRI, ed., Jie TANG, ed.. ASONAM '15 : Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015. New York: ACM, 2015, pp. 308-313. ISBN 978-1-4503-3854-7. Available under: doi: 10.1145/2808797.2809388
BibTex
@inproceedings{Brugger2015Explo-55846,
  year={2015},
  doi={10.1145/2808797.2809388},
  title={Exploiting Phase Transitions for the Efficient Sampling of the Fixed Degree Sequence Model},
  isbn={978-1-4503-3854-7},
  publisher={ACM},
  address={New York},
  booktitle={ASONAM '15 : Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015},
  pages={308--313},
  editor={Pei, Jian and Silvestri, Fabrizio and Tang, Jie},
  author={Brugger, Christian and Chinazzo, André Lucas and John, Alexandre Flores and De Schryver, Christian and Wehn, Norbert and Spitz, Andreas and Zweig, Katharina Anna}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55846">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-13T08:47:26Z</dcterms:available>
    <dc:creator>John, Alexandre Flores</dc:creator>
    <dc:contributor>Wehn, Norbert</dc:contributor>
    <dc:contributor>Brugger, Christian</dc:contributor>
    <dc:creator>De Schryver, Christian</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55846"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-13T08:47:26Z</dc:date>
    <dc:creator>Brugger, Christian</dc:creator>
    <dc:creator>Zweig, Katharina Anna</dc:creator>
    <dc:creator>Chinazzo, André Lucas</dc:creator>
    <dcterms:issued>2015</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>Exploiting Phase Transitions for the Efficient Sampling of the Fixed Degree Sequence Model</dcterms:title>
    <dc:contributor>De Schryver, Christian</dc:contributor>
    <dc:creator>Spitz, Andreas</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">Real-world network data is often very noisy and contains erroneous or missing edges. These superfluous and missing edges can be identified statistically by assessing the number of common neighbors of the two incident nodes. To evaluate whether this number of common neighbors, the so called co-occurrence, is statistically significant, a comparison with the expected co-occurrence in a suitable random graph model is required. For networks with a skewed degree distribution, including most real-world networks, it is known that the fixed degree sequence model, which maintains the degrees of nodes, is favourable over using simplified graph models that are based on an independence assumption. However, the use of a fixed degree sequence model requires sampling from the space of all graphs with the given degree sequence and measuring the co-occurrence of each pair of nodes in each of the samples, since there is no known closed formula for this statistic. While there exist log-linear approaches such as Markov chain Monte Carlo sampling, the computational complexity still depends on the length of the Markov chain and the number of samples, which is significant in large-scale networks. In this article, we show based on ground truth data that there are various phase transition-like tipping points that enable us to choose a comparatively low number of samples and to reduce the length of the Markov chains without reducing the quality of the significance test. As a result, the computational effort can be reduced by an order of magnitudes.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Zweig, Katharina Anna</dc:contributor>
    <dc:contributor>Chinazzo, André Lucas</dc:contributor>
    <dc:contributor>John, Alexandre Flores</dc:contributor>
    <dc:creator>Wehn, Norbert</dc:creator>
    <dc:contributor>Spitz, Andreas</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen