Publikation: Exploring the Limits of Super-Planckian Far-Field Radiative Heat Transfer Using 2D Materials
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Very recently it has been predicted that the far-field radiative heat transfer between two macroscopic systems can largely overcome the limit set by Planck’s law if one of their dimensions becomes much smaller than the thermal wavelength (λTh ≈ 10 μm at room temperature). To explore the ultimate limit of the far-field violation of Planck’s law, here we present a theoretical study of the radiative heat transfer between two-dimensional (2D) materials. We show that the far-field thermal radiation exchanged by two coplanar systems with a one-atom-thick geometrical cross section can be more than 7 orders of magnitude larger than the theoretical limit set by Planck’s law for blackbodies and can be comparable to the heat transfer of two parallel sheets at the same distance. In particular, we illustrate this phenomenon with different materials such as graphene, where the radiation can also be tuned by a external gate, and single-layer black phosphorus. In both cases the far-field radiative heat transfer is dominated by TE-polarized guiding modes, and surface plasmons play no role. Our predictions provide a new insight into the thermal radiation exchange mechanisms between 2D materials.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
FERNÁNDEZ-HURTADO, Victor, Antonio I. FERNÁNDEZ-DOMÍNGUEZ, Johannes FEIST, Francisco J. GARCÍA-VIDAL, Juan Carlos CUEVAS, 2018. Exploring the Limits of Super-Planckian Far-Field Radiative Heat Transfer Using 2D Materials. In: ACS Photonics. 2018, 5(8), pp. 3082-3088. eISSN 2330-4022. Available under: doi: 10.1021/acsphotonics.8b00328BibTex
@article{FernandezHurtado2018-08-15Explo-43399, year={2018}, doi={10.1021/acsphotonics.8b00328}, title={Exploring the Limits of Super-Planckian Far-Field Radiative Heat Transfer Using 2D Materials}, number={8}, volume={5}, journal={ACS Photonics}, pages={3082--3088}, author={Fernández-Hurtado, Victor and Fernández-Domínguez, Antonio I. and Feist, Johannes and García-Vidal, Francisco J. and Cuevas, Juan Carlos} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43399"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-09-28T09:31:55Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-09-28T09:31:55Z</dc:date> <dc:creator>García-Vidal, Francisco J.</dc:creator> <dc:contributor>Cuevas, Juan Carlos</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Feist, Johannes</dc:contributor> <dcterms:abstract xml:lang="eng">Very recently it has been predicted that the far-field radiative heat transfer between two macroscopic systems can largely overcome the limit set by Planck’s law if one of their dimensions becomes much smaller than the thermal wavelength (λTh ≈ 10 μm at room temperature). To explore the ultimate limit of the far-field violation of Planck’s law, here we present a theoretical study of the radiative heat transfer between two-dimensional (2D) materials. We show that the far-field thermal radiation exchanged by two coplanar systems with a one-atom-thick geometrical cross section can be more than 7 orders of magnitude larger than the theoretical limit set by Planck’s law for blackbodies and can be comparable to the heat transfer of two parallel sheets at the same distance. In particular, we illustrate this phenomenon with different materials such as graphene, where the radiation can also be tuned by a external gate, and single-layer black phosphorus. In both cases the far-field radiative heat transfer is dominated by TE-polarized guiding modes, and surface plasmons play no role. Our predictions provide a new insight into the thermal radiation exchange mechanisms between 2D materials.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43399"/> <dc:creator>Fernández-Domínguez, Antonio I.</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Fernández-Hurtado, Victor</dc:creator> <dc:creator>Feist, Johannes</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:issued>2018-08-15</dcterms:issued> <dc:contributor>Fernández-Hurtado, Victor</dc:contributor> <dc:creator>Cuevas, Juan Carlos</dc:creator> <dcterms:title>Exploring the Limits of Super-Planckian Far-Field Radiative Heat Transfer Using 2D Materials</dcterms:title> <dc:contributor>Fernández-Domínguez, Antonio I.</dc:contributor> <dc:contributor>García-Vidal, Francisco J.</dc:contributor> </rdf:Description> </rdf:RDF>