Publikation: Optimizing Quantum Error Correction Codes with Reinforcement Learning
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Quantum error correction is widely thought to be the key to fault-tolerant quantum computation. However, determining the most suited encoding for unknown error channels or specific laboratory setups is highly challenging. Here, we present a reinforcement learning framework for optimizing and fault-tolerantly adapting quantum error correction codes. We consider a reinforcement learning agent tasked with modifying a family of surface code quantum memories until a desired logical error rate is reached. Using efficient simulations with about 70 data qubits with arbitrary connectivity, we demonstrate that such a reinforcement learning agent can determine near-optimal solutions, in terms of the number of data qubits, for various error models of interest. Moreover, we show that agents trained on one setting are able to successfully transfer their experience to different settings. This ability for transfer learning showcases the inherent strengths of reinforcement learning and the applicability of our approach for optimization from off-line simulations to on-line laboratory settings.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
POULSEN NAUTRUP, Hendrik, Nicolas DELFOSSE, Vedran DUNJKO, Hans J. BRIEGEL, Nicolai FRIIS, 2019. Optimizing Quantum Error Correction Codes with Reinforcement Learning. In: Quantum. 2019, 3, 215. eISSN 2521-327X. Available under: doi: 10.22331/q-2019-12-16-215BibTex
@article{PoulsenNautrup2019-12-16Optim-48313, year={2019}, doi={10.22331/q-2019-12-16-215}, title={Optimizing Quantum Error Correction Codes with Reinforcement Learning}, volume={3}, journal={Quantum}, author={Poulsen Nautrup, Hendrik and Delfosse, Nicolas and Dunjko, Vedran and Briegel, Hans J. and Friis, Nicolai}, note={Article Number: 215} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/48313"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-01-21T13:36:43Z</dcterms:available> <dcterms:issued>2019-12-16</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/48313"/> <dc:contributor>Poulsen Nautrup, Hendrik</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/48313/1/Poulsen-Nautrup_2-1a1opj0r5jtxt6.pdf"/> <dc:creator>Delfosse, Nicolas</dc:creator> <dc:creator>Dunjko, Vedran</dc:creator> <dc:contributor>Delfosse, Nicolas</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-01-21T13:36:43Z</dc:date> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/48313/1/Poulsen-Nautrup_2-1a1opj0r5jtxt6.pdf"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:contributor>Dunjko, Vedran</dc:contributor> <dc:creator>Friis, Nicolai</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Friis, Nicolai</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/> <dcterms:abstract xml:lang="eng">Quantum error correction is widely thought to be the key to fault-tolerant quantum computation. However, determining the most suited encoding for unknown error channels or specific laboratory setups is highly challenging. Here, we present a reinforcement learning framework for optimizing and fault-tolerantly adapting quantum error correction codes. We consider a reinforcement learning agent tasked with modifying a family of surface code quantum memories until a desired logical error rate is reached. Using efficient simulations with about 70 data qubits with arbitrary connectivity, we demonstrate that such a reinforcement learning agent can determine near-optimal solutions, in terms of the number of data qubits, for various error models of interest. Moreover, we show that agents trained on one setting are able to successfully transfer their experience to different settings. This ability for transfer learning showcases the inherent strengths of reinforcement learning and the applicability of our approach for optimization from off-line simulations to on-line laboratory settings.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>Optimizing Quantum Error Correction Codes with Reinforcement Learning</dcterms:title> <dc:contributor>Briegel, Hans J.</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/> <dc:creator>Briegel, Hans J.</dc:creator> <dc:rights>Attribution 4.0 International</dc:rights> <dc:creator>Poulsen Nautrup, Hendrik</dc:creator> </rdf:Description> </rdf:RDF>