Publikation:

Optimizing Quantum Error Correction Codes with Reinforcement Learning

Lade...
Vorschaubild

Dateien

Poulsen-Nautrup_2-1a1opj0r5jtxt6.pdf
Poulsen-Nautrup_2-1a1opj0r5jtxt6.pdfGröße: 3.34 MBDownloads: 456

Datum

2019

Autor:innen

Poulsen Nautrup, Hendrik
Delfosse, Nicolas
Dunjko, Vedran
Friis, Nicolai

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Quantum. 2019, 3, 215. eISSN 2521-327X. Available under: doi: 10.22331/q-2019-12-16-215

Zusammenfassung

Quantum error correction is widely thought to be the key to fault-tolerant quantum computation. However, determining the most suited encoding for unknown error channels or specific laboratory setups is highly challenging. Here, we present a reinforcement learning framework for optimizing and fault-tolerantly adapting quantum error correction codes. We consider a reinforcement learning agent tasked with modifying a family of surface code quantum memories until a desired logical error rate is reached. Using efficient simulations with about 70 data qubits with arbitrary connectivity, we demonstrate that such a reinforcement learning agent can determine near-optimal solutions, in terms of the number of data qubits, for various error models of interest. Moreover, we show that agents trained on one setting are able to successfully transfer their experience to different settings. This ability for transfer learning showcases the inherent strengths of reinforcement learning and the applicability of our approach for optimization from off-line simulations to on-line laboratory settings.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
100 Philosophie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690POULSEN NAUTRUP, Hendrik, Nicolas DELFOSSE, Vedran DUNJKO, Hans J. BRIEGEL, Nicolai FRIIS, 2019. Optimizing Quantum Error Correction Codes with Reinforcement Learning. In: Quantum. 2019, 3, 215. eISSN 2521-327X. Available under: doi: 10.22331/q-2019-12-16-215
BibTex
@article{PoulsenNautrup2019-12-16Optim-48313,
  year={2019},
  doi={10.22331/q-2019-12-16-215},
  title={Optimizing Quantum Error Correction Codes with Reinforcement Learning},
  volume={3},
  journal={Quantum},
  author={Poulsen Nautrup, Hendrik and Delfosse, Nicolas and Dunjko, Vedran and Briegel, Hans J. and Friis, Nicolai},
  note={Article Number: 215}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/48313">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-01-21T13:36:43Z</dcterms:available>
    <dcterms:issued>2019-12-16</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/48313"/>
    <dc:contributor>Poulsen Nautrup, Hendrik</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/48313/1/Poulsen-Nautrup_2-1a1opj0r5jtxt6.pdf"/>
    <dc:creator>Delfosse, Nicolas</dc:creator>
    <dc:creator>Dunjko, Vedran</dc:creator>
    <dc:contributor>Delfosse, Nicolas</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-01-21T13:36:43Z</dc:date>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/48313/1/Poulsen-Nautrup_2-1a1opj0r5jtxt6.pdf"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:contributor>Dunjko, Vedran</dc:contributor>
    <dc:creator>Friis, Nicolai</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>Friis, Nicolai</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <dcterms:abstract xml:lang="eng">Quantum error correction is widely thought to be the key to fault-tolerant quantum computation. However, determining the most suited encoding for unknown error channels or specific laboratory setups is highly challenging. Here, we present a reinforcement learning framework for optimizing and fault-tolerantly adapting quantum error correction codes. We consider a reinforcement learning agent tasked with modifying a family of surface code quantum memories until a desired logical error rate is reached. Using efficient simulations with about 70 data qubits with arbitrary connectivity, we demonstrate that such a reinforcement learning agent can determine near-optimal solutions, in terms of the number of data qubits, for various error models of interest. Moreover, we show that agents trained on one setting are able to successfully transfer their experience to different settings. This ability for transfer learning showcases the inherent strengths of reinforcement learning and the applicability of our approach for optimization from off-line simulations to on-line laboratory settings.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Optimizing Quantum Error Correction Codes with Reinforcement Learning</dcterms:title>
    <dc:contributor>Briegel, Hans J.</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <dc:creator>Briegel, Hans J.</dc:creator>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:creator>Poulsen Nautrup, Hendrik</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja
Diese Publikation teilen