Publikation:

Automated Image Processing for the Analysis of DNA Repair Dynamics

Lade...
Vorschaubild

Dateien

Merhof etal.pdf
Merhof etal.pdfGröße: 2.05 MBDownloads: 248

Datum

2011

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Preprint
Publikationsstatus
Published

Erschienen in

Zusammenfassung

The efficient repair of cellular DNA is essential for the maintenance and inheritance of genomic information. In order to cope with the high frequency of spontaneous and induced DNA damage, a multitude of repair mechanisms have evolved. These are enabled by a wide range of protein factors specifically recognizing different types of lesions and finally restoring the normal DNA sequence. This work focuses on the repair factor XPC (xeroderma pigmentosum complementation group C), which identifies bulky DNA lesions and initiates their removal via the nucleotide excision repair pathway. The binding of XPC to damaged DNA can be visualized in living cells by following the accumulation of a fluorescent XPC fusion at lesions induced by laser microirradiation in a fluorescence microscope. In this work, an automated image processing pipeline is presented which allows to identify and quantify the accumulation reaction without any user interaction. The image processing pipeline comprises a preprocessing stage where the image stack data is filtered and the nucleus of interest is segmented. Afterwards, the images are registered to each other in order to account for movements of the cell, and then a bounding box enclosing the XPC-specific signal is automatically determined. Finally, the time-dependent relocation of XPC is evaluated by analyzing the intensity change within this box. Comparison of the automated processing results with the manual evaluation yields qualitatively similar results. However, the automated analysis provides more accurate, reproducible data with smaller standard errors. The image processing pipeline presented in this work allows for an efficient analysis of large amounts of experimental data with no user interaction required.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Automated intensity measurement, DNA repair, fluorescence microscopy

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690RIESS, Thorsten, Christian DIETZ, Martin TOMAS, Elisa FERRANDO-MAY, Dorit MERHOF, 2011. Automated Image Processing for the Analysis of DNA Repair Dynamics
BibTex
@unpublished{Riess2011Autom-13656,
  year={2011},
  title={Automated Image Processing for the Analysis of DNA Repair Dynamics},
  author={Riess, Thorsten and Dietz, Christian and Tomas, Martin and Ferrando-May, Elisa and Merhof, Dorit}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/13656">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Riess, Thorsten</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>Dietz, Christian</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/13656/2/Merhof%20etal.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Ferrando-May, Elisa</dc:contributor>
    <dcterms:issued>2011</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-06-16T15:55:58Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:creator>Merhof, Dorit</dc:creator>
    <dcterms:abstract xml:lang="eng">The efficient repair of cellular DNA is essential for the maintenance and inheritance of genomic information. In order to cope with the high frequency of spontaneous and induced DNA damage, a multitude of repair mechanisms have evolved. These are enabled by a wide range of protein factors specifically recognizing different types of lesions and finally restoring the normal DNA sequence. This work focuses on the repair factor XPC (xeroderma pigmentosum complementation group C), which identifies bulky DNA lesions and initiates their removal via the nucleotide excision repair pathway. The binding of XPC to damaged DNA can be visualized in living cells by following the accumulation of a fluorescent XPC fusion at lesions induced by laser microirradiation in a fluorescence microscope. In this work, an automated image processing pipeline is presented which allows to identify and quantify the accumulation reaction without any user interaction. The image processing pipeline comprises a preprocessing stage where the image stack data is filtered and the nucleus of interest is segmented. Afterwards, the images are registered to each other in order to account for movements of the cell, and then a bounding box enclosing the XPC-specific signal is automatically determined. Finally, the time-dependent relocation of XPC is evaluated by analyzing the intensity change within this box. Comparison of the automated processing results with the manual evaluation yields qualitatively similar results. However, the automated analysis provides more accurate, reproducible data with smaller standard errors. The image processing pipeline presented in this work allows for an efficient analysis of large amounts of experimental data with no user interaction required.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Dietz, Christian</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Ferrando-May, Elisa</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-06-16T15:55:58Z</dc:date>
    <dc:contributor>Merhof, Dorit</dc:contributor>
    <dc:creator>Tomas, Martin</dc:creator>
    <dc:contributor>Riess, Thorsten</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/13656"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Tomas, Martin</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/13656/2/Merhof%20etal.pdf"/>
    <dcterms:title>Automated Image Processing for the Analysis of DNA Repair Dynamics</dcterms:title>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen