Publikation:

Enriching Multivariate Temporal Patterns with Context Information to Support Classification

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2013

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Sammelband
Publikationsstatus
Published

Erschienen in

MOEWES, Christian, ed., Andreas NÜRNBERGER, ed.. Computational Intelligence in Intelligent Data Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 195-206. Studies in Computational Intelligence. 445. ISBN 978-3-642-32377-5. Available under: doi: 10.1007/978-3-642-32378-2_13

Zusammenfassung

In this paper we consider classification tasks where the class depends on the co-evolution of multiple variables over time, for instance, “if A happens before B and in the meantime we do not observe C, then we have a failure of class X”. We present a two-phased approach to derive such patterns from data. In the first step, we seek the most specific pattern that still matches all data from one class and in the second step we constrain the pattern further, such that it discriminates with respect to other classes. While the second step is directly motivated by the classification task, the first step enables the user to better match his or her mental model of the temporal process to the patterns derived by the classifier. The experimental evaluation on the libras dataset has shown that the additional first step not only improves the interpretability, but also the classification results.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HÖPPNER, Frank, Sebastian PETER, Michael R. BERTHOLD, 2013. Enriching Multivariate Temporal Patterns with Context Information to Support Classification. In: MOEWES, Christian, ed., Andreas NÜRNBERGER, ed.. Computational Intelligence in Intelligent Data Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 195-206. Studies in Computational Intelligence. 445. ISBN 978-3-642-32377-5. Available under: doi: 10.1007/978-3-642-32378-2_13
BibTex
@incollection{Hoppner2013Enric-23471,
  year={2013},
  doi={10.1007/978-3-642-32378-2_13},
  title={Enriching Multivariate Temporal Patterns with Context Information to Support Classification},
  number={445},
  isbn={978-3-642-32377-5},
  publisher={Springer Berlin Heidelberg},
  address={Berlin, Heidelberg},
  series={Studies in Computational Intelligence},
  booktitle={Computational Intelligence in Intelligent Data Analysis},
  pages={195--206},
  editor={Moewes, Christian and Nürnberger, Andreas},
  author={Höppner, Frank and Peter, Sebastian and Berthold, Michael R.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/23471">
    <dc:language>eng</dc:language>
    <dc:contributor>Peter, Sebastian</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-29T06:32:04Z</dcterms:available>
    <dc:creator>Peter, Sebastian</dc:creator>
    <dcterms:issued>2013</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-29T06:32:04Z</dc:date>
    <dcterms:abstract xml:lang="eng">In this paper we consider classification tasks where the class depends on the co-evolution of multiple variables over time, for instance, “if A happens before B and in the meantime we do not observe C, then we have a failure of class X”. We present a two-phased approach to derive such patterns from data. In the first step, we seek the most specific pattern that still matches all data from one class and in the second step we constrain the pattern further, such that it discriminates with respect to other classes. While the second step is directly motivated by the classification task, the first step enables the user to better match his or her mental model of the temporal process to the patterns derived by the classifier. The experimental evaluation on the libras dataset has shown that the additional first step not only improves the interpretability, but also the classification results.</dcterms:abstract>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/23471"/>
    <dc:creator>Berthold, Michael R.</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Höppner, Frank</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Enriching Multivariate Temporal Patterns with Context Information to Support Classification</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Höppner, Frank</dc:contributor>
    <dcterms:bibliographicCitation>Computational Intelligence in Intelligent Data Analysis / Christian Moewes; Andreas Nürnberger (eds.). - Heidelberg [u.a.] : Springer, 2013. - S. 195-206. - (Studies in computational intelligence ; 445). - ISBN 978-3-642-32377-5</dcterms:bibliographicCitation>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Berthold, Michael R.</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen