Publikation: Enriching Multivariate Temporal Patterns with Context Information to Support Classification
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this paper we consider classification tasks where the class depends on the co-evolution of multiple variables over time, for instance, “if A happens before B and in the meantime we do not observe C, then we have a failure of class X”. We present a two-phased approach to derive such patterns from data. In the first step, we seek the most specific pattern that still matches all data from one class and in the second step we constrain the pattern further, such that it discriminates with respect to other classes. While the second step is directly motivated by the classification task, the first step enables the user to better match his or her mental model of the temporal process to the patterns derived by the classifier. The experimental evaluation on the libras dataset has shown that the additional first step not only improves the interpretability, but also the classification results.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HÖPPNER, Frank, Sebastian PETER, Michael R. BERTHOLD, 2013. Enriching Multivariate Temporal Patterns with Context Information to Support Classification. In: MOEWES, Christian, ed., Andreas NÜRNBERGER, ed.. Computational Intelligence in Intelligent Data Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 195-206. Studies in Computational Intelligence. 445. ISBN 978-3-642-32377-5. Available under: doi: 10.1007/978-3-642-32378-2_13BibTex
@incollection{Hoppner2013Enric-23471, year={2013}, doi={10.1007/978-3-642-32378-2_13}, title={Enriching Multivariate Temporal Patterns with Context Information to Support Classification}, number={445}, isbn={978-3-642-32377-5}, publisher={Springer Berlin Heidelberg}, address={Berlin, Heidelberg}, series={Studies in Computational Intelligence}, booktitle={Computational Intelligence in Intelligent Data Analysis}, pages={195--206}, editor={Moewes, Christian and Nürnberger, Andreas}, author={Höppner, Frank and Peter, Sebastian and Berthold, Michael R.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/23471"> <dc:language>eng</dc:language> <dc:contributor>Peter, Sebastian</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-29T06:32:04Z</dcterms:available> <dc:creator>Peter, Sebastian</dc:creator> <dcterms:issued>2013</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-29T06:32:04Z</dc:date> <dcterms:abstract xml:lang="eng">In this paper we consider classification tasks where the class depends on the co-evolution of multiple variables over time, for instance, “if A happens before B and in the meantime we do not observe C, then we have a failure of class X”. We present a two-phased approach to derive such patterns from data. In the first step, we seek the most specific pattern that still matches all data from one class and in the second step we constrain the pattern further, such that it discriminates with respect to other classes. While the second step is directly motivated by the classification task, the first step enables the user to better match his or her mental model of the temporal process to the patterns derived by the classifier. The experimental evaluation on the libras dataset has shown that the additional first step not only improves the interpretability, but also the classification results.</dcterms:abstract> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/23471"/> <dc:creator>Berthold, Michael R.</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:creator>Höppner, Frank</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>Enriching Multivariate Temporal Patterns with Context Information to Support Classification</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Höppner, Frank</dc:contributor> <dcterms:bibliographicCitation>Computational Intelligence in Intelligent Data Analysis / Christian Moewes; Andreas Nürnberger (eds.). - Heidelberg [u.a.] : Springer, 2013. - S. 195-206. - (Studies in computational intelligence ; 445). - ISBN 978-3-642-32377-5</dcterms:bibliographicCitation> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Berthold, Michael R.</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>