Binary Colloidal Nanoparticle Concentration Gradients in a Centrifugal Field at High Concentration
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Binary colloidal nanoparticles have been found to form different types of crystalline phases at varied radial positions in a centrifugal field by Chen et al (ACS nano 2015, 9, 6944-50). The variety of binary phase behaviors resulted from the two different nanoparticle concentration gradients but to date the gradients can only be empirically controlled. For the first time, we are able to measure, fit and simulate binary hard sphere colloidal nanoparticle concentration gradients at high particle concentration up to 30 vol%, which enables tailor-made gradients in a centrifugal field. By this means, a continuous range of binary particle concentration ratios can be accessed in one single experiment to obtain an extended phase diagram. By dispersing two differently sized silica nanoparticles labeled with two different fluorescence dyes in a refractive index matching solvent, we can use a Multi-Wavelength Analytical Ultracentrifuge (MWL-AUC) to measure the individual concentration gradient for each particle size in sedimentation-diffusion equilibrium. The influence of the remaining slight turbidity at high concentration can be corrected using the MWL spectra from the AUC data. We also show that the experimental concentration gradients can be fitted using a non-interacting non-ideal sedimentation model. By using these fitted parameters, we are able to simulate nanoparticle concentration gradients, which agreed with the subsequent experiments at a high concentration of 10 vol% and thus allowed for the simulation of binary concentration gradients of hard sphere nanoparticles in preparative ultracentrifuges (PUC). Finally we demonstrated that by simulating the concentration gradients in PUC, a continuous and extended binary nanoparticle phase diagram can be obtained by simply studying the structure evolution along the centrifugal field for one single sample instead of a large number of experiments with discrete compositions in conventional studies.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
XU, Xufeng, Tina FRANKE, Kristian SCHILLING, Nico A. J. M. SOMMERDIJK, Helmut CÖLFEN, 2019. Binary Colloidal Nanoparticle Concentration Gradients in a Centrifugal Field at High Concentration. In: Nano Letters. 2019, 19(2), pp. 1136-1142. ISSN 1530-6984. eISSN 1530-6992. Available under: doi: 10.1021/acs.nanolett.8b04496BibTex
@article{Xu2019-02-13Binar-44690, year={2019}, doi={10.1021/acs.nanolett.8b04496}, title={Binary Colloidal Nanoparticle Concentration Gradients in a Centrifugal Field at High Concentration}, number={2}, volume={19}, issn={1530-6984}, journal={Nano Letters}, pages={1136--1142}, author={Xu, Xufeng and Franke, Tina and Schilling, Kristian and Sommerdijk, Nico A. J. M. and Cölfen, Helmut} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44690"> <dc:contributor>Schilling, Kristian</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dc:language>eng</dc:language> <dc:contributor>Sommerdijk, Nico A. J. M.</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44690"/> <dcterms:issued>2019-02-13</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dc:creator>Xu, Xufeng</dc:creator> <dcterms:title>Binary Colloidal Nanoparticle Concentration Gradients in a Centrifugal Field at High Concentration</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Franke, Tina</dc:contributor> <dc:creator>Franke, Tina</dc:creator> <dc:contributor>Xu, Xufeng</dc:contributor> <dc:creator>Sommerdijk, Nico A. J. M.</dc:creator> <dcterms:abstract xml:lang="eng">Binary colloidal nanoparticles have been found to form different types of crystalline phases at varied radial positions in a centrifugal field by Chen et al (ACS nano 2015, 9, 6944-50). The variety of binary phase behaviors resulted from the two different nanoparticle concentration gradients but to date the gradients can only be empirically controlled. For the first time, we are able to measure, fit and simulate binary hard sphere colloidal nanoparticle concentration gradients at high particle concentration up to 30 vol%, which enables tailor-made gradients in a centrifugal field. By this means, a continuous range of binary particle concentration ratios can be accessed in one single experiment to obtain an extended phase diagram. By dispersing two differently sized silica nanoparticles labeled with two different fluorescence dyes in a refractive index matching solvent, we can use a Multi-Wavelength Analytical Ultracentrifuge (MWL-AUC) to measure the individual concentration gradient for each particle size in sedimentation-diffusion equilibrium. The influence of the remaining slight turbidity at high concentration can be corrected using the MWL spectra from the AUC data. We also show that the experimental concentration gradients can be fitted using a non-interacting non-ideal sedimentation model. By using these fitted parameters, we are able to simulate nanoparticle concentration gradients, which agreed with the subsequent experiments at a high concentration of 10 vol% and thus allowed for the simulation of binary concentration gradients of hard sphere nanoparticles in preparative ultracentrifuges (PUC). Finally we demonstrated that by simulating the concentration gradients in PUC, a continuous and extended binary nanoparticle phase diagram can be obtained by simply studying the structure evolution along the centrifugal field for one single sample instead of a large number of experiments with discrete compositions in conventional studies.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Schilling, Kristian</dc:creator> <dc:contributor>Cölfen, Helmut</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-23T12:53:27Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-23T12:53:27Z</dc:date> <dc:creator>Cölfen, Helmut</dc:creator> </rdf:Description> </rdf:RDF>