Publikation: On non parametric statistical inference for densities under long-range dependence
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Statistical inference for kernel estimators of the marginal density is considered for stationary processes with long-range dependence. The asymptotic behavior is known to differ sharply between small and large bandwidths. The statistical implications of this dichotomy have not been fully explored in the literature. The optimal rate and a functional limit theorem are obtained for large bandwidths, if the long-memory parameter exceeds a certain threshold. The threshold can be lowered arbitrarily close to the lower bound of the long-memory range. This result is extended to processes with infinite variance, and the construction of simultaneous finite-sample confidence bands is considered.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BERAN, Jan, Nadja SCHUMM, 2017. On non parametric statistical inference for densities under long-range dependence. In: Communications in Statistics / Theory and Methods. 2017, 46(22), pp. 11296-11314. ISSN 0361-0926. eISSN 1532-415X. Available under: doi: 10.1080/03610926.2016.1263740BibTex
@article{Beran2017-11-17param-40425, year={2017}, doi={10.1080/03610926.2016.1263740}, title={On non parametric statistical inference for densities under long-range dependence}, number={22}, volume={46}, issn={0361-0926}, journal={Communications in Statistics / Theory and Methods}, pages={11296--11314}, author={Beran, Jan and Schumm, Nadja} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40425"> <dc:creator>Beran, Jan</dc:creator> <dcterms:abstract xml:lang="eng">Statistical inference for kernel estimators of the marginal density is considered for stationary processes with long-range dependence. The asymptotic behavior is known to differ sharply between small and large bandwidths. The statistical implications of this dichotomy have not been fully explored in the literature. The optimal rate and a functional limit theorem are obtained for large bandwidths, if the long-memory parameter exceeds a certain threshold. The threshold can be lowered arbitrarily close to the lower bound of the long-memory range. This result is extended to processes with infinite variance, and the construction of simultaneous finite-sample confidence bands is considered.</dcterms:abstract> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-10-26T09:46:27Z</dc:date> <dc:contributor>Beran, Jan</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Schumm, Nadja</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:issued>2017-11-17</dcterms:issued> <dc:language>eng</dc:language> <dc:creator>Schumm, Nadja</dc:creator> <dcterms:title>On non parametric statistical inference for densities under long-range dependence</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40425"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-10-26T09:46:27Z</dcterms:available> </rdf:Description> </rdf:RDF>