Publikation:

On non parametric statistical inference for densities under long-range dependence

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2017

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Communications in Statistics / Theory and Methods. 2017, 46(22), pp. 11296-11314. ISSN 0361-0926. eISSN 1532-415X. Available under: doi: 10.1080/03610926.2016.1263740

Zusammenfassung

Statistical inference for kernel estimators of the marginal density is considered for stationary processes with long-range dependence. The asymptotic behavior is known to differ sharply between small and large bandwidths. The statistical implications of this dichotomy have not been fully explored in the literature. The optimal rate and a functional limit theorem are obtained for large bandwidths, if the long-memory parameter exceeds a certain threshold. The threshold can be lowered arbitrarily close to the lower bound of the long-memory range. This result is extended to processes with infinite variance, and the construction of simultaneous finite-sample confidence bands is considered.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Infinite variance, kernel density estimation, long-range dependence, simultaneous confidence band, smoothing dichotomy

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BERAN, Jan, Nadja SCHUMM, 2017. On non parametric statistical inference for densities under long-range dependence. In: Communications in Statistics / Theory and Methods. 2017, 46(22), pp. 11296-11314. ISSN 0361-0926. eISSN 1532-415X. Available under: doi: 10.1080/03610926.2016.1263740
BibTex
@article{Beran2017-11-17param-40425,
  year={2017},
  doi={10.1080/03610926.2016.1263740},
  title={On non parametric statistical inference for densities under long-range dependence},
  number={22},
  volume={46},
  issn={0361-0926},
  journal={Communications in Statistics / Theory and Methods},
  pages={11296--11314},
  author={Beran, Jan and Schumm, Nadja}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40425">
    <dc:creator>Beran, Jan</dc:creator>
    <dcterms:abstract xml:lang="eng">Statistical inference for kernel estimators of the marginal density is considered for stationary processes with long-range dependence. The asymptotic behavior is known to differ sharply between small and large bandwidths. The statistical implications of this dichotomy have not been fully explored in the literature. The optimal rate and a functional limit theorem are obtained for large bandwidths, if the long-memory parameter exceeds a certain threshold. The threshold can be lowered arbitrarily close to the lower bound of the long-memory range. This result is extended to processes with infinite variance, and the construction of simultaneous finite-sample confidence bands is considered.</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-10-26T09:46:27Z</dc:date>
    <dc:contributor>Beran, Jan</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Schumm, Nadja</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:issued>2017-11-17</dcterms:issued>
    <dc:language>eng</dc:language>
    <dc:creator>Schumm, Nadja</dc:creator>
    <dcterms:title>On non parametric statistical inference for densities under long-range dependence</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40425"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-10-26T09:46:27Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen