Publikation: MultiInv : Inverting multidimensional scaling projections and computing decision maps by multilateration
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Institutionen der Bundesrepublik Deutschland: 03EI1048D
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Inverse projections enable a variety of tasks such as the exploration of classifier decision boundaries, creating counterfactual explanations, and generating synthetic data. Yet, many existing inverse projection methods are difficult to implement, challenging to predict, and sensitive to parameter settings. To address these, we propose to invert distance-preserving projections like Multidimensional Scaling (MDS) projections by using multilateration – a method used for geopositioning. Our approach finds data values for locations where no data point is projected under the key assumption that a given projection technique preserves pairwise distances among data samples in the low-dimensional space. Being based on a geometrical relationship, our technique is more interpretable than comparable machine learning-based approaches and can invert 2-dimensional projections up to |D| − 1 dimensional spaces if given at least |D| data points. We compare several strategies for multilateration point selection, show the application of our technique on three additional projection techniques apart from MDS, and use established quality metrics to evaluate its accuracy in comparison to existing inverse projections. We also show its application to computing decision maps for exploring the behavior of trained classification models. When the projection to invert captures data distances well, our inverse performs similarly to existing approaches while being interpretable and considerably simpler to compute.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BLUMBERG, Daniela, Yu WANG, Alexandru TELEA, Daniel A. KEIM, Frederik L. DENNIG, 2025. MultiInv : Inverting multidimensional scaling projections and computing decision maps by multilateration. In: Computers & Graphics. Elsevier. 2025, 129, 104234. ISSN 0097-8493. eISSN 1873-7684. Verfügbar unter: doi: 10.1016/j.cag.2025.104234BibTex
@article{Blumberg2025-05Multi-73394,
title={MultiInv : Inverting multidimensional scaling projections and computing decision maps by multilateration},
year={2025},
doi={10.1016/j.cag.2025.104234},
volume={129},
issn={0097-8493},
journal={Computers & Graphics},
author={Blumberg, Daniela and Wang, Yu and Telea, Alexandru and Keim, Daniel A. and Dennig, Frederik L.},
note={Article Number: 104234}
}RDF
<rdf:RDF
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:bibo="http://purl.org/ontology/bibo/"
xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:void="http://rdfs.org/ns/void#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >
<rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73394">
<dc:creator>Wang, Yu</dc:creator>
<dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-05-22T07:56:05Z</dc:date>
<void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
<bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73394"/>
<dc:rights>Attribution 4.0 International</dc:rights>
<dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
<dc:creator>Dennig, Frederik L.</dc:creator>
<dc:contributor>Dennig, Frederik L.</dc:contributor>
<dcterms:issued>2025-05</dcterms:issued>
<dcterms:abstract>Inverse projections enable a variety of tasks such as the exploration of classifier decision boundaries, creating counterfactual explanations, and generating synthetic data. Yet, many existing inverse projection methods are difficult to implement, challenging to predict, and sensitive to parameter settings. To address these, we propose to invert distance-preserving projections like Multidimensional Scaling (MDS) projections by using multilateration – a method used for geopositioning. Our approach finds data values for locations where no data point is projected under the key assumption that a given projection technique preserves pairwise distances among data samples in the low-dimensional space. Being based on a geometrical relationship, our technique is more interpretable than comparable machine learning-based approaches and can invert 2-dimensional projections up to |D| − 1 dimensional spaces if given at least |D| data points. We compare several strategies for multilateration point selection, show the application of our technique on three additional projection techniques apart from MDS, and use established quality metrics to evaluate its accuracy in comparison to existing inverse projections. We also show its application to computing decision maps for exploring the behavior of trained classification models. When the projection to invert captures data distances well, our inverse performs similarly to existing approaches while being interpretable and considerably simpler to compute.</dcterms:abstract>
<dc:contributor>Wang, Yu</dc:contributor>
<dc:contributor>Blumberg, Daniela</dc:contributor>
<dc:contributor>Keim, Daniel A.</dc:contributor>
<dc:language>eng</dc:language>
<dc:creator>Keim, Daniel A.</dc:creator>
<foaf:homepage rdf:resource="http://localhost:8080/"/>
<dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-05-22T07:56:05Z</dcterms:available>
<dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/73394/1/Blumberg_2-16wlkclzq1obc7.pdf"/>
<dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
<dc:creator>Blumberg, Daniela</dc:creator>
<dc:creator>Telea, Alexandru</dc:creator>
<dc:contributor>Telea, Alexandru</dc:contributor>
<dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
<dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/73394/1/Blumberg_2-16wlkclzq1obc7.pdf"/>
<dcterms:title>MultiInv : Inverting multidimensional scaling projections and computing decision maps by multilateration</dcterms:title>
</rdf:Description>
</rdf:RDF>