Publikation:

MultiInv : Inverting multidimensional scaling projections and computing decision maps by multilateration

Lade...
Vorschaubild

Dateien

Blumberg_2-16wlkclzq1obc7.pdf
Blumberg_2-16wlkclzq1obc7.pdfGröße: 5.71 MBDownloads: 67

Datum

2025

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Deutsche Forschungsgemeinschaft (DFG): 251654672
Institutionen der Bundesrepublik Deutschland: 03EI1048D

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Computers & Graphics. Elsevier. 2025, 129, 104234. ISSN 0097-8493. eISSN 1873-7684. Verfügbar unter: doi: 10.1016/j.cag.2025.104234

Zusammenfassung

Inverse projections enable a variety of tasks such as the exploration of classifier decision boundaries, creating counterfactual explanations, and generating synthetic data. Yet, many existing inverse projection methods are difficult to implement, challenging to predict, and sensitive to parameter settings. To address these, we propose to invert distance-preserving projections like Multidimensional Scaling (MDS) projections by using multilateration – a method used for geopositioning. Our approach finds data values for locations where no data point is projected under the key assumption that a given projection technique preserves pairwise distances among data samples in the low-dimensional space. Being based on a geometrical relationship, our technique is more interpretable than comparable machine learning-based approaches and can invert 2-dimensional projections up to |D| − 1 dimensional spaces if given at least |D| data points. We compare several strategies for multilateration point selection, show the application of our technique on three additional projection techniques apart from MDS, and use established quality metrics to evaluate its accuracy in comparison to existing inverse projections. We also show its application to computing decision maps for exploring the behavior of trained classification models. When the projection to invert captures data distances well, our inverse performs similarly to existing approaches while being interpretable and considerably simpler to compute.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Inverse Projections, Dimensionality Reduction, Data Visualization

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BLUMBERG, Daniela, Yu WANG, Alexandru TELEA, Daniel A. KEIM, Frederik L. DENNIG, 2025. MultiInv : Inverting multidimensional scaling projections and computing decision maps by multilateration. In: Computers & Graphics. Elsevier. 2025, 129, 104234. ISSN 0097-8493. eISSN 1873-7684. Verfügbar unter: doi: 10.1016/j.cag.2025.104234
BibTex
@article{Blumberg2025-05Multi-73394,
  title={MultiInv : Inverting multidimensional scaling projections and computing decision maps by multilateration},
  year={2025},
  doi={10.1016/j.cag.2025.104234},
  volume={129},
  issn={0097-8493},
  journal={Computers & Graphics},
  author={Blumberg, Daniela and Wang, Yu and Telea, Alexandru and Keim, Daniel A. and Dennig, Frederik L.},
  note={Article Number: 104234}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73394">
    <dc:creator>Wang, Yu</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-05-22T07:56:05Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73394"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Dennig, Frederik L.</dc:creator>
    <dc:contributor>Dennig, Frederik L.</dc:contributor>
    <dcterms:issued>2025-05</dcterms:issued>
    <dcterms:abstract>Inverse projections enable a variety of tasks such as the exploration of classifier decision boundaries, creating counterfactual explanations, and generating synthetic data. Yet, many existing inverse projection methods are difficult to implement, challenging to predict, and sensitive to parameter settings. To address these, we propose to invert distance-preserving projections like Multidimensional Scaling (MDS) projections by using multilateration – a method used for geopositioning. Our approach finds data values for locations where no data point is projected under the key assumption that a given projection technique preserves pairwise distances among data samples in the low-dimensional space. Being based on a geometrical relationship, our technique is more interpretable than comparable machine learning-based approaches and can invert 2-dimensional projections up to |D| − 1 dimensional spaces if given at least |D| data points. We compare several strategies for multilateration point selection, show the application of our technique on three additional projection techniques apart from MDS, and use established quality metrics to evaluate its accuracy in comparison to existing inverse projections. We also show its application to computing decision maps for exploring the behavior of trained classification models. When the projection to invert captures data distances well, our inverse performs similarly to existing approaches while being interpretable and considerably simpler to compute.</dcterms:abstract>
    <dc:contributor>Wang, Yu</dc:contributor>
    <dc:contributor>Blumberg, Daniela</dc:contributor>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-05-22T07:56:05Z</dcterms:available>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/73394/1/Blumberg_2-16wlkclzq1obc7.pdf"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:creator>Blumberg, Daniela</dc:creator>
    <dc:creator>Telea, Alexandru</dc:creator>
    <dc:contributor>Telea, Alexandru</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/73394/1/Blumberg_2-16wlkclzq1obc7.pdf"/>
    <dcterms:title>MultiInv : Inverting multidimensional scaling projections and computing decision maps by multilateration</dcterms:title>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen