Publikation: Automated tracking and analysis of behavior in restrained insects
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Background
Insect behavior is often monitored by human observers and measured in the form of binary responses. This procedure is time costly and does not allow a fine graded measurement of behavioral performance in individual animals. To overcome this limitation, we have developed a computer vision system which allows the automated tracking of body parts of restrained insects.
New method
Our system crops a continuous video into separate shots with a static background. It then segments out the insect's head and preprocesses the detected moving objects to exclude detection errors. A Bayesian-based algorithm is proposed to identify the trajectory of each body part.
Results
We demonstrate the application of this novel tracking algorithm by monitoring movements of the mouthparts and antennae of honey bees and ants, and demonstrate its suitability for analyzing the behavioral performance of individual bees using a common associative learning paradigm.
Comparison with existing methods
Our tracking system differs from existing systems in that it does not require each video to be labeled manually and is capable of tracking insects’ body parts even when working with low frame-rate videos. Our system can be generalized for other insect tracking applications.
Conclusions
Our system paves the ground for fully automated monitoring of the behavior of restrained insects and accounts for individual variations in graded behavior.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SHEN, Minmin, Paul SZYSZKA, Oliver DEUSSEN, C. Giovanni GALIZIA, Dorit MERHOF, 2015. Automated tracking and analysis of behavior in restrained insects. In: Journal of Neuroscience Methods. 2015, 239, pp. 194-205. ISSN 0165-0270. eISSN 1872-678X. Available under: doi: 10.1016/j.jneumeth.2014.10.021BibTex
@article{Shen2015Autom-29309, year={2015}, doi={10.1016/j.jneumeth.2014.10.021}, title={Automated tracking and analysis of behavior in restrained insects}, volume={239}, issn={0165-0270}, journal={Journal of Neuroscience Methods}, pages={194--205}, author={Shen, Minmin and Szyszka, Paul and Deussen, Oliver and Galizia, C. Giovanni and Merhof, Dorit} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29309"> <dc:contributor>Shen, Minmin</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:abstract xml:lang="eng">Background<br /><br />Insect behavior is often monitored by human observers and measured in the form of binary responses. This procedure is time costly and does not allow a fine graded measurement of behavioral performance in individual animals. To overcome this limitation, we have developed a computer vision system which allows the automated tracking of body parts of restrained insects.<br /><br />New method<br /><br />Our system crops a continuous video into separate shots with a static background. It then segments out the insect's head and preprocesses the detected moving objects to exclude detection errors. A Bayesian-based algorithm is proposed to identify the trajectory of each body part.<br /><br />Results<br /><br />We demonstrate the application of this novel tracking algorithm by monitoring movements of the mouthparts and antennae of honey bees and ants, and demonstrate its suitability for analyzing the behavioral performance of individual bees using a common associative learning paradigm.<br /><br />Comparison with existing methods<br /><br />Our tracking system differs from existing systems in that it does not require each video to be labeled manually and is capable of tracking insects’ body parts even when working with low frame-rate videos. Our system can be generalized for other insect tracking applications.<br /><br />Conclusions<br /><br />Our system paves the ground for fully automated monitoring of the behavior of restrained insects and accounts for individual variations in graded behavior.</dcterms:abstract> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29309/1/Galizia_0-258605.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-11-26T09:33:11Z</dcterms:available> <dc:language>eng</dc:language> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29309"/> <dc:creator>Merhof, Dorit</dc:creator> <dc:creator>Galizia, C. Giovanni</dc:creator> <dcterms:title>Automated tracking and analysis of behavior in restrained insects</dcterms:title> <dc:creator>Szyszka, Paul</dc:creator> <dc:contributor>Galizia, C. Giovanni</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Deussen, Oliver</dc:contributor> <dc:contributor>Merhof, Dorit</dc:contributor> <dcterms:issued>2015</dcterms:issued> <dc:contributor>Szyszka, Paul</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-11-26T09:33:11Z</dc:date> <dc:creator>Deussen, Oliver</dc:creator> <dc:rights>terms-of-use</dc:rights> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29309/1/Galizia_0-258605.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Shen, Minmin</dc:creator> </rdf:Description> </rdf:RDF>