Automated tracking and analysis of behavior in restrained insects

Lade...
Vorschaubild
Dateien
Galizia_0-258605.pdf
Galizia_0-258605.pdfGröße: 817.24 KBDownloads: 398
Datum
2015
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
unikn.publication.listelement.citation.prefix.version.undefined
Journal of Neuroscience Methods. 2015, 239, pp. 194-205. ISSN 0165-0270. eISSN 1872-678X. Available under: doi: 10.1016/j.jneumeth.2014.10.021
Zusammenfassung

Background

Insect behavior is often monitored by human observers and measured in the form of binary responses. This procedure is time costly and does not allow a fine graded measurement of behavioral performance in individual animals. To overcome this limitation, we have developed a computer vision system which allows the automated tracking of body parts of restrained insects.

New method

Our system crops a continuous video into separate shots with a static background. It then segments out the insect's head and preprocesses the detected moving objects to exclude detection errors. A Bayesian-based algorithm is proposed to identify the trajectory of each body part.

Results

We demonstrate the application of this novel tracking algorithm by monitoring movements of the mouthparts and antennae of honey bees and ants, and demonstrate its suitability for analyzing the behavioral performance of individual bees using a common associative learning paradigm.

Comparison with existing methods

Our tracking system differs from existing systems in that it does not require each video to be labeled manually and is capable of tracking insects’ body parts even when working with low frame-rate videos. Our system can be generalized for other insect tracking applications.

Conclusions

Our system paves the ground for fully automated monitoring of the behavior of restrained insects and accounts for individual variations in graded behavior.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
Insect, Behavior, Honey bee, Classical conditioning, Multi-target tracking, Antenna
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690SHEN, Minmin, Paul SZYSZKA, Oliver DEUSSEN, C. Giovanni GALIZIA, Dorit MERHOF, 2015. Automated tracking and analysis of behavior in restrained insects. In: Journal of Neuroscience Methods. 2015, 239, pp. 194-205. ISSN 0165-0270. eISSN 1872-678X. Available under: doi: 10.1016/j.jneumeth.2014.10.021
BibTex
@article{Shen2015Autom-29309,
  year={2015},
  doi={10.1016/j.jneumeth.2014.10.021},
  title={Automated tracking and analysis of behavior in restrained insects},
  volume={239},
  issn={0165-0270},
  journal={Journal of Neuroscience Methods},
  pages={194--205},
  author={Shen, Minmin and Szyszka, Paul and Deussen, Oliver and Galizia, C. Giovanni and Merhof, Dorit}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29309">
    <dc:contributor>Shen, Minmin</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:abstract xml:lang="eng">Background&lt;br /&gt;&lt;br /&gt;Insect behavior is often monitored by human observers and measured in the form of binary responses. This procedure is time costly and does not allow a fine graded measurement of behavioral performance in individual animals. To overcome this limitation, we have developed a computer vision system which allows the automated tracking of body parts of restrained insects.&lt;br /&gt;&lt;br /&gt;New method&lt;br /&gt;&lt;br /&gt;Our system crops a continuous video into separate shots with a static background. It then segments out the insect's head and preprocesses the detected moving objects to exclude detection errors. A Bayesian-based algorithm is proposed to identify the trajectory of each body part.&lt;br /&gt;&lt;br /&gt;Results&lt;br /&gt;&lt;br /&gt;We demonstrate the application of this novel tracking algorithm by monitoring movements of the mouthparts and antennae of honey bees and ants, and demonstrate its suitability for analyzing the behavioral performance of individual bees using a common associative learning paradigm.&lt;br /&gt;&lt;br /&gt;Comparison with existing methods&lt;br /&gt;&lt;br /&gt;Our tracking system differs from existing systems in that it does not require each video to be labeled manually and is capable of tracking insects’ body parts even when working with low frame-rate videos. Our system can be generalized for other insect tracking applications.&lt;br /&gt;&lt;br /&gt;Conclusions&lt;br /&gt;&lt;br /&gt;Our system paves the ground for fully automated monitoring of the behavior of restrained insects and accounts for individual variations in graded behavior.</dcterms:abstract>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29309/1/Galizia_0-258605.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-11-26T09:33:11Z</dcterms:available>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29309"/>
    <dc:creator>Merhof, Dorit</dc:creator>
    <dc:creator>Galizia, C. Giovanni</dc:creator>
    <dcterms:title>Automated tracking and analysis of behavior in restrained insects</dcterms:title>
    <dc:creator>Szyszka, Paul</dc:creator>
    <dc:contributor>Galizia, C. Giovanni</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Deussen, Oliver</dc:contributor>
    <dc:contributor>Merhof, Dorit</dc:contributor>
    <dcterms:issued>2015</dcterms:issued>
    <dc:contributor>Szyszka, Paul</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-11-26T09:33:11Z</dc:date>
    <dc:creator>Deussen, Oliver</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29309/1/Galizia_0-258605.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Shen, Minmin</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet